Towards Improving the Comprehension of HTN Planning Domains by Means of Preconditions and Effects of Compound Tasks

## Conny Olz,<sup>1</sup> Eva Wierzba<sup>1</sup>, Pascal Bercher<sup>2</sup>, Felix Lindner<sup>1</sup>

## <sup>1</sup>Ulm University <sup>2</sup>The Australian National University

## KEPS 2021











| Motivation | Formal Framework | Inferred Precs and Effects | Study |
|------------|------------------|----------------------------|-------|
| •          | 00               | 0                          | 0000  |
| Motivation |                  |                            |       |

Tools and techniques to assist the process of engineering HTN planning domains are rare.

User study: Can inferred preconditions and effects improve comprehensibility of domains?





| Motivation      | Formal Framework | Inferred Precs and Effects | Study |
|-----------------|------------------|----------------------------|-------|
| O               | ●0               | O                          | 0000  |
| STRIPS Planning |                  |                            |       |

A STRIPS planning domain  $\mathcal{D}=(F,A)$  and problem  $\Pi=(\mathcal{D},s_I,g)$  consists of

- a finite set of facts F,
- actions  $a = (prec, add, del) \in A$ ,
- an initial state  $s_l \in 2^F$  and a goal description  $g \subseteq F$ .

 $\rightarrow$  A sequence of actions  $\langle a_0 \dots a_n \rangle$  is a solution to  $\Pi$  if and only if it is applicable in  $s_I$  and results in a goal state.



|                   | Formal Framework | Inferred Precs and Effects | Study |
|-------------------|------------------|----------------------------|-------|
|                   | ○●               | O                          | 0000  |
| T.o. HTN Planning |                  |                            |       |

$$\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$$





| Motivation        | Formal Framework | Inferred Precs and Effects | Study |
|-------------------|------------------|----------------------------|-------|
| O                 | ○●               | O                          | 0000  |
| T.o. HTN Planning |                  |                            |       |

$$\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$$

- A a set of primitive tasks.
- *C* a set of compound tasks.
- $T = A \cup C$ .





Australiar

University



| Motivation        | Formal Framework | Inferred Precs and Effects | Study |
|-------------------|------------------|----------------------------|-------|
| O                 | ○●               | O                          | 0000  |
| T.o. HTN Planning |                  |                            |       |

$$\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$$

- A a set of primitive tasks.
- *C* a set of compound tasks.

• 
$$T = A \cup C$$
.

•  $tn_I \in T^*$  the initial task network.

## A solution must:

• be a refinement of *tn*<sub>1</sub>,



**C**1

|                   | Formal Framework | Inferred Precs and Effects |  |
|-------------------|------------------|----------------------------|--|
|                   | 00               |                            |  |
| T.o. HTN Planning |                  |                            |  |

$$\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$$

- A a set of primitive tasks.
- C a set of compound tasks.

• 
$$T = A \cup C$$

- $tn_I \in T^*$  the initial task network.
- $M \subseteq C \times T^*$  the methods.

- be a refinement of tn<sub>I</sub>,
- only contain primitive tasks,



0

|                   | Formal Framework | Inferred Precs and Effects |      |
|-------------------|------------------|----------------------------|------|
| 0                 | 00               | 0                          | 0000 |
| T.o. HTN Planning |                  |                            |      |

$$\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$$

- A a set of primitive tasks.
- C a set of compound tasks.

• 
$$T = A \cup C$$
.

- $tn_I \in T^*$  the initial task network.
- $M \subseteq C \times T^*$  the methods.

- be a refinement of *tn<sub>I</sub>*,
- only contain primitive tasks,



0

|                   | Formal Framework | Inferred Precs and Effects |  |
|-------------------|------------------|----------------------------|--|
|                   | 00               |                            |  |
| T.o. HTN Planning |                  |                            |  |



 $\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$ 

- A a set of primitive tasks.
- *C* a set of compound tasks.
- $T = A \cup C$ .
- $tn_I \in T^*$  the initial task network.
- $M \subseteq C \times T^*$  the methods.

- be a refinement of *tn<sub>I</sub>*,
- only contain primitive tasks,

|                   | Formal Framework | Inferred Precs and Effects |  |
|-------------------|------------------|----------------------------|--|
|                   | 00               |                            |  |
| T.o. HTN Planning |                  |                            |  |

$$\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$$

- A a set of primitive tasks.
- C a set of compound tasks.

• 
$$T = A \cup C$$
.

- $tn_I \in T^*$  the initial task network.
- $M \subseteq C \times T^*$  the methods.

- be a refinement of *tn*<sub>I</sub>,
- only contain primitive tasks,

|                   | Formal Framework | Inferred Precs and Effects |  |
|-------------------|------------------|----------------------------|--|
|                   | 00               |                            |  |
| T.o. HTN Planning |                  |                            |  |

$$\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$$

- A a set of primitive tasks.
- *C* a set of compound tasks.

• 
$$T = A \cup C$$
.

- $tn_I \in T^*$  the initial task network.
- $M \subseteq C \times T^*$  the methods.

- be a refinement of *tn*<sub>I</sub>,
- only contain primitive tasks,



|                   | Formal Framework | Inferred Precs and Effects |  |
|-------------------|------------------|----------------------------|--|
|                   | 00               |                            |  |
| T.o. HTN Planning |                  |                            |  |



 $\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$ 

- A a set of primitive tasks.
- C a set of compound tasks.
- $T = A \cup C$ .
- $tn_I \in T^*$  the initial task network.
- $M \subseteq C \times T^*$  the methods.

- be a refinement of *tn<sub>I</sub>*,
- only contain primitive tasks,





 $\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$ 

- A a set of primitive tasks.
- *C* a set of compound tasks.
- $T = A \cup C$ .
- $tn_I \in T^*$  the initial task network.
- $M \subseteq C \times T^*$  the methods.

- be a refinement of tn<sub>I</sub>,
- only contain primitive tasks,





Jniversitv

 $\mathcal{D} = (F, A, C, M), \Pi = (\mathcal{D}, s_I, tn_I, g)$ 

- A a set of primitive tasks.
- C a set of compound tasks.
- $T = A \cup C$ .
- $tn_I \in T^*$  the initial task network.
- $M \subseteq C \times T^*$  the methods.

- be a refinement of  $tn_I$ ,
- only contain primitive tasks,
- be applicable in s<sub>I</sub>, and
- lead to a goal state.



 $\rightarrow$  atVancouver and happy are effects of HolidayInVancouver



Australian National

University

|                 | Formal Framework | Inferred Precs and Effects<br>o | Study<br>●000 |
|-----------------|------------------|---------------------------------|---------------|
| Main Hypothesis |                  |                                 |               |

Hypothesis: Presenting inferred preconditions and effects of compound tasks increases the understandability of an HTN planning domain.



| Motivation   | Formal Framework | Inferred Precs and Effects | Study |
|--------------|------------------|----------------------------|-------|
| O            | 00               | O                          | 0●00  |
| Study design |                  |                            |       |

Online study consisting of

- Questions concerning demographic data and prior knowledge
- A short tutorial on HTN planning
- Question about self assessment
- Presentation of a robot arm-movement HTN planning domain
- Questions concerning the state after "execution" of the presented compound tasks
- Self assessment of perceived difficulty and text field

200 Participants

- Treatment group: questionnaire that contains inferred preconditions and effects of compound tasks
- Control questionnaire without extra information

| Motivation   | Formal Framework | Inferred Precs and Effects | Study |
|--------------|------------------|----------------------------|-------|
| O            | 00               | O                          | 0●00  |
| Study design |                  |                            |       |

Online study consisting of

- Questions concerning demographic data and prior knowledge
- A short tutorial on HTN planning
- Question about self assessment
- Presentation of a robot arm-movement HTN planning domain





| Motivation   | Formal Framework | Inferred Precs and Effects | Study |
|--------------|------------------|----------------------------|-------|
| O            | 00               | O                          | 0●00  |
| Study design |                  |                            |       |

Online study consisting of

- Questions concerning demographic data and prior knowledge
- A short tutorial on HTN planning
- Question about self assessment
- Presentation of a robot arm-movement HTN planning domain
- Questions concerning the state after "execution" of the presented compound tasks
- Self assessment of perceived difficulty and text field

200 Participants

- Treatment group: questionnaire that contains inferred preconditions and effects of compound tasks
- Control questionnaire without extra information

| Motivation | Formal Framework | Inferred Precs and Effects | Study |
|------------|------------------|----------------------------|-------|
| O          | 00               | O                          | 00●0  |
| Results    |                  |                            |       |

- Number of mistakes as measure for how well domain was understood
- A directed Wilcoxon rank-sum test indicated that the number of mistakes was smaller for the treatment group (with inferred preconditions and effects) (Mdn = 6) than for control group (Mdn = 8), W = 5724, p = .03.



| Motivation | Formal Framework | Inferred Precs and Effects | Study |
|------------|------------------|----------------------------|-------|
| O          | 00               | O                          | 000●  |
| Discussion |                  |                            |       |

Mean self-reportet difficulty was rather high

 $\rightarrow$  Could have decreased beneficial effect of preconditions and effects

Ideas for future studies:

- Improve tutorial
- Changes concerning population sample

