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Preface

The International Planning Competition (IPC) is held every few years in the context of ICAPS.
It empirically evaluates state-of-the-art planning systems on a number of benchmark problems.
The goals of the IPC are to promote planning research, highlight challenges in the planning
community and provide new and interesting problems as benchmarks for future research. The
IPC has an important role in the ICAPS community, being a forum to compare different al-
gorithmic ideas and implementations, and setting standards for research and evaluation in the
area. Similar to the lineage of IPC workshops organised at ICAPS 2003, 2007, 2012, 2015, and
2019 this workshop aims to review the current status of the IPC, analyse the results of the
last IPC (2020), and provide a venue for discussing aspects that will be helpful for preparing
forthcoming competitions.

Since we have organised the last International Planning Competition – the IPC 2020, the duty
falls on us to organise the WIPC 2021.

Gregor, Daniel, and Pascal
Organizers of the WIPC,
October 2021
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Online Policy Improvement for Probabilistic Planning:
Benchmarks and Baselines

Murugeswari Issakkimuthu and Alan Fern
School of EECS

Oregon State University
Corvallis, OR 97331, USA

Abstract

The goal of Online Policy Improvement (OPI) is to use a
given base policy to compute a better policy via online plan-
ning. There are OPI algorithms that come with theoretical
guarantees of policy improvement under ideal conditions.
However, when the ideal conditions are not met in practice,
these algorithms can result in policy degradation, i.e., the new
policy can perform worse than the base policy. Our goal in
this paper is to move towards a better understanding of the
empirical performance of OPI algorithms. We propose bench-
mark problems and base policies and suggest evaluation met-
rics for OPI. We also present baseline results on the bench-
mark set for two OPI algorithms, which demonstrate the base-
lines are a solid starting point for comparison.

Introduction
Online planning is a practical approach to solving Markov
decision problems with large state spaces. An action choice
is made for the current state and the selected action is
executed immediately, so action decisions need to be
made only for the states visited during the online planning
process. Online planning aims at computing a near optimal
policy. Rather, online policy improvement (OPI) is online
planning with the goal of computing a policy that performs
better than a given base policy.

When a base policy is available, OPI can sometimes
be a safer alternative to optimal planning. For example,
attempts at optimal planning under computational limits
may completely fail, while OPI may provide useful results.
There are different approaches to online planning. Our
focus is on search-based approaches, where the Q-values
of actions at the current state are estimated via lookahead
search. Online planning returns an action that maximizes
the Q-value estimate, while OPI can return any action with
a Q-value estimate greater than that of the base policy action.

There are OPI algorithms that come with theoretical
guarantees of policy improvement under ideal conditions,
e.g., policy rollout (Tesauro and Galperin (1997), Bertsekas
and Tsitsiklis (1996)), nested rollout (Cazenave (2009)),
parallel rollout (Chang, Givan, and Chong (2004)), Limited
Discrepancy Forward Search Sparse Sampling (LD-FSSS)

(Issakkimuthu, Fern, and Tadepalli (2020)). However, when
the ideal conditions are not met in practice, OPI algorithms
can result in policy degradation, i.e., the new policy can
perform worse than the base policy.

Our goal in this work is to move towards a better under-
standing of the empirical performance of OPI algorithms.
We propose benchmark problems and base policies and
suggest evaluation metrics for OPI. Our benchmark set
consists of 5 domains from past International Probabilistic
Planning Competitions with 10 problems of varying levels
of difficulty in each domain and 2 base policies of different
qualities for each problem. The benchmark set will be made
available as open source. We also present baseline results
on the benchmark set for two classes of OPI algorithms. In
particular, these classes include algorithms that can leverage
transition probabilities when available or just use the ability
to sample transitions. We show that these classes are able
to cover different points in the performance trade-off space,
making them useful for future comparisons.

Background and Related Work
We assume basic familiarity with Markov Decision Pro-
cesses (MDPs). A discrete finite-horizon MDP is a tuple
〈S,A, P,R,H〉, where S is a finite set of states, A is a finite
set of actions, P : S × A × S → [0, 1] is a state-transition
function with Pss′(a) denoting the probability of reaching
state s′ from state s on action a and

∑
s′∈S Pss′(a) = 1

for all a ∈ A, R : S × A → R is a real-valued reward
function defined on state-action pairs and H is an integer
representing the finite horizon.

A deterministic, non-stationary policy of the MDP is a
time-dependent mapping from states to actions, i.e., π =
{µ0, µ1, . . . , µH−1}, where µk : S → A for k =
{0, 1, . . . ,H − 1}. The H steps-to-go value function of the
policy is V πH , where

V πk (s) = R(s, µH−k(s)) +
∑

s′∈S
Pss′(µH−k(s)) · V πk−1(s

′)

for k = {1, 2, . . . ,H} and V π0 (s) = 0 for all s ∈ S. The H
steps-to-go Q-value function with respect to π is

QπH(s, a) = R(s, a) +
∑

s′∈S
Pss′(a) · V πH−1(s

′)
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for all s ∈ S and a ∈ A . A policy π′ is said to be better than
a policy π if V π

′
H (s) ≥ V πH(s) for all s ∈ S. A solution of the

MDP is an optimal policy π∗ with value function V ∗H(s) =
maxπ V

π
H(s) for all s ∈ S.

Online Planning
An MDP can be solved offline via approaches like value
iteration, policy iteration or linear programming (Puterman
(1994)). The offline solution techniques can be computa-
tionally expensive for MDPs with large state spaces. An
alternative practical approach is online planning, where plan
execution is interleaved with planning. Action decisions
are made only for the initial state and the states visited
subsequently in the online planning process.

Our focus is on search-based online planning, where
the Q-values of actions at the current state are estimated
via finite-horizon lookahead search. Typically, a search
tree is built with the current state at the root followed by
alternating layers of action nodes and state nodes. Leaf
nodes are initialized and the values of internal nodes are
computed from the values of their successor nodes. An
action that maximizes the Q-value estimate is returned for
the current state. There are variants of search-based online
planning, e.g., Sparse Sampling (SS) (Kearns, Mansour,
and Ng (2002)), Forward Search Sparse Sampling (FSSS)
(Walsh, Goschin, and Littman (2010)), Monte Carlo Tree
Search (MCTS) (Browne et al. (2012)).

Base Policies in Online Planning. Online planning does
not require a base policy, but it can benefit from one if there
is one available. MCTS algorithms typically use a default
base policy to initialize the values of leaf nodes using one or
more rollouts of the base policy. The well-known AlphaGo
and AlphaZero programs (Silver et al. (2017, 2018)) use
base policies to expand their search trees. (Nguyen et al.
(2014)) use a base policy as an extended action at every
node of the search tree to identify better actions at the
nodes. (Pinto and Fern (2017)) use a partial policy that
gives a subset of actions for every state to successfully
prune actions in the search tree. All these approaches can
be roughly viewed as a form of OPI, even though the goal
is not just to perform better than the base policy.

Online Policy Improvement
Online Policy Improvement (OPI) has the goal of doing
better than a given base policy, so a base policy is a required
input for OPI algorithms. Once the Q-values of actions are
estimated for the current state, OPI can return any action
with a Q-value greater than that of the base policy action.
OPI can therefore be done with as few as one off-policy
action (non base-policy action) and the base policy action
at the root. There are several existing OPI algorithms that
come with theoretical guarantees of policy improvement.
We discuss a few such algorithms below.

Policy Rollout. The policy rollout algorithm is an online
implementation of a single offline policy improvement step
over the base policy value function. The policy improve-
ment step is based on the fact that actions with Q-values
greater than the Q-value of the base policy action will be
better than the base policy action for a given state. When the
base policy is substituted with improved actions at one or
more states, the resulting policy will be better than the base
policy. In the online version, the Q-value of an action at the
current state is estimated as an average over multiple base
policy trajectories starting with that action. The estimates
will get close to the actual values when the average is
computed with a large number of trajectories of sufficient
length. The policy rollout algorithm has been shown to be
effective in different applications (Tesauro and Galperin
(1997), Bertsekas and Castanon (1999)).

Nested Rollout. The nested rollout algorithm (Cazenave
(2009)) is an online implementation of a sequence of
iterations of the policy iteration algorithm, in contrast to the
policy rollout algorithm that implements just one iteration
of the policy iteration algorithm. The policy computed at
each iteration of the policy iteration algorithm will be better
than all the previous policies along the sequence. Hence
nested rollout is guaranteed to return a better policy when
the Q-values are estimated with a large number of simulated
trajectories of sufficient length.

Parallel Rollout. The parallel rollout algorithm takes
multiple base policies as input to compute a policy that
is better than all the base policies (Chang, Givan, and
Chong (2004)). It is an online version of the offline policy
switching algorithm that returns for every state the action
of the base policy with the highest value among all the base
policies. The resulting policy is guaranteed to be better than
all the base policies. Parallel rollout estimates the values
of all base policies for the current state as the average over
multiple trajectories of the base policy. The average must be
computed over a large number of trajectories of sufficient
length for parallel rollout to return a better policy.

Limited Discrepancy Forward Search Sparse Sam-
pling (LD-FSSS). LD-FSSS is a version of FSSS (Walsh,
Goschin, and Littman (2010)) with a class of choice func-
tions called Limited Discrepancy Choice Function (LDCF)
(Issakkimuthu, Fern, and Tadepalli (2020)). A choice
function defines the off-policy actions (discrepancies)
available at the internal nodes of the search tree. LDCF
limits the number of discrepancies along each root-to-leaf
path and the depth up to which discrepancies are allowed in
the search tree. It also restricts the set of discrepancies for
every state to be non-increasing with depth. The base policy
action is expanded at all the internal nodes of the search
tree. When leaf nodes are initialized to base policy values
and action values are computed with all possible successors
with the true state-transition probabilities, LD-FSSS is
guaranteed to return a policy better than the base policy.
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Sysadmin Game of Life Tamarisk Skill Teaching Wildfire
# Bad Good Bad Good Bad Good Bad Good Bad Good
1 171 ± 7 335 ± 5 76 ± 13 177 ± 10 -178 ± 21 -144 ± 20 65 ± 2 65 ± 2 -647 ± 308 -594 ± 251
2 250 ± 11 304 ± 9 82 ± 8 119 ± 9 -590 ± 29 -502 ± 25 -60 ± 0 75 ± 2 -9015 ± 387 -8998 ± 344
3 421 ± 15 554 ± 14 112 ± 7 137 ± 5 -264 ± 38 -222 ± 33 56 ± 15 81 ± 14 -1439 ± 412 -1529 ± 432
4 379 ± 9 487 ± 15 216 ± 17 327 ± 15 -804 ± 30 -681 ± 31 -64 ± 7 57 ± 17 -9050 ± 791 -8585 ± 801
5 518 ± 9 627 ± 17 236 ± 9 281 ± 8 -642 ± 44 -618 ± 37 -64 ± 19 -64 ± 19 -1010 ± 343 -754 ± 257
6 541 ± 15 575 ± 17 244 ± 6 276 ± 5 -952 ± 29 -860 ± 33 -16 ± 31 -10 ± 30 -7697 ± 663 -7374 ± 761
7 597 ± 10 721 ± 17 303 ± 18 462 ± 10 -826 ± 48 -706 ± 45 -297 ± 10 -82 ± 26 -5729 ± 475 -5447 ± 418
8 481 ± 11 583 ± 16 336 ± 14 429 ± 9 -1188 ± 29 -1108 ± 34 -498 ± 12 -201 ± 35 -9912 ± 583 -9792 ± 619
9 780 ± 12 839 ± 15 337 ± 12 421 ± 5 -868 ± 63 -758 ± 52 -166 ± 31 -175 ± 28 -4939 ± 715 -4840 ± 747

10 523 ± 11 616 ± 17 257 ± 22 473 ± 26 -1225 ± 41 -1087 ± 47 -623 ± 12 -239 ± 37 -10834 ± 711 -10584 ± 660

Table 1: Performance of the two base policies

The OPI algorithms mentioned above are all based
on offline procedures that are theoretically guaranteed
to return a policy better than the base policy. However,
the ideal conditions on the number of sampled trajec-
tories, lengths of trajectories, leaf initialization to base
policy values, perfect state transitions of actions might not
hold in practice. In that case, the online implementations
can result in a policy that is worse than the given base policy.

OPI Baselines
Our baselines are variants of the policy rollout algorithm
with a Q-value adjustment heuristic to deal with policy
degradation to some extent. Let s0 be the current state
for which an action decision is to be made, As0 be the
set of actions expanded at s0, L be the lookahead hori-
zon and π be the base policy. The base policy can be
non-stationary. In order to keep the notation simple, we
describe the baselines and heuristic with a deterministic,
stationary policy π = {µ0, µ1, . . . , µL−1}, where µk = µ
for k = 0, . . . , L − 1 and µ : S → A. We use π(s) instead
of µ(s) for the base policy action at state s.

Baseline 1: MC Policy Rollout
Our first baseline is a version of the Monte Carlo (MC)
policy rollout algorithm (Bertsekas and Tsitsiklis (1996),
Tesauro and Galperin (1997)). The Q-values of actions at
s0 are estimated from sampled trajectories without building
a search tree. The Q-value estimate of an action is the aver-
age of the values of multiple base-policy trajectories starting
with that action. If N is the number of trajectories, then

Q̂πL(s0, a) =
1

N

N∑

i=1

(
R(s0, a) +

L−1∑

k=1

R(sik, π(s
i
k))

)
,

where sik is the kth subsequent state of trajec-
tory i and si1 ∈ {s′ ∈ S : Ps0s′(a) > 0} and
sik+1 ∈ {s′ ∈ S : Psiksik+1

(π(sik)) > 0} for 0 < k < L and

0 < i < L. We note that Q̂πL(s0, a) is an unbiased estimate
of QπL(s0, a).

Baseline 2: DAG Policy Rollout
The second baseline builds a search DAG (Directed Acyclic
Graph) to make better use of samples compared to the first
baseline. The DAG will have s0 at its root followed by
a sequence of state-node layers (S1, S2, . . . , SL). While
computing the backup values of states in the DAG, every
state in layer Si is assumed to be connected to all the states
in layer Si+1. This baseline is also a version of the policy
rollout algorithm, so off-policy actions are allowed only at
the root and only the base policy action is allowed at all
other internal nodes of the DAG.

DAG Construction. We expand the base policy action
π(s0) and one or more off-policy actions at the root node
s0 and generate b0 successors for each action using the true
state-transition probabilities. The b0 successors generated
for an action can have repeated states. We put together all
the generated successors of all the actions and eliminate du-
plicates to form the subsequent state-node layer S1, i.e.,

S1 =
⋃

a∈As0

GSucc(s0, a, b0),

where GSucc(s0, a, b0) is the set of distinct succes-
sors of action a taken b0 times at state s0 such that
GSucc(s0, a, b0) ⊆ {s′ ∈ S : Ps0s′(a) > 0} and
|GSucc(s0, a, b0)| ≤ b0.

We then expand the base policy action for all the states
in layer S1 and generate b successors for each state using
the true state-transition probabilities. Again, the b successors
generated for a state can have repeated states. We put to-
gether all the generated successors of all the states and elim-
inate duplicates to form the subsequent state-node layer S2.
We follow the same process to create all subsequent state-
node layers S3, . . . , SL. Formally,

Sk+1 =
⋃

s∈Sk

GSucc(s, π(s), b)

for k = 1 . . . , L − 1, where GSucc(s, π(s), b)
is the set of distinct successors of the base pol-
icy action π(s) taken b times at state s such that
GSucc(s, π(s), b) ⊆ {s′ ∈ S : Pss′(π(s)) > 0} and
|GSucc(s, π(s), b)| ≤ b.
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Q-Value Computation. We set the values of leaf
nodes to zero. We estimate the value of each state node
in layers S1 through SL−1 as the immediate reward
of the base policy action for the state plus a weighted
average of the values of all the state nodes in the follow-
ing layer. Let V̂L−k(s) denote the value estimate of state
s in layer Sk in the DAG. Then V̂0(s) = 0 for all s ∈ SL and

V̂L−k(s) = R(s, π(s)) +
∑

s′∈Sk+1

P̂k,ss′(π(s)) · V̂L−k−1(s
′),

where

P̂k,ss′(a) =
Pss′(a)∑

s′∈Sk+1
Pss′(a)

.

The L steps-to-go Q-value of an action at the root node
s0 is the immediate reward of the action plus a weighted
average of the values of its successors in layer S1, i.e.,

Q̂πL(s0, a) = R(s0, a) +
∑

s′∈S1

P̂0,s0s′(a) · V̂L−1(s
′).

We note that Q̂πL(s0, a) computed using normalized
weights can be a biased estimate of QπL(s0, a).

The Q-value Adjustment Heuristic
The purpose of the Q-value adjustment heuristic is to
make it harder for off-policy actions to qualify as better
actions in the current state. The OPI algorithm will then
be conservative in switching to off-policy actions. We
achieve this by computing an error margin for the Q-value
estimate of each action at s0. We then increase (decrease)
the Q-value estimate of the base policy action (off-policy
actions) by their respective error margins.

Let επ(s0, a) denote the error margin for action a. We
have 2 formulas for the error margins and hence 2 different
heuristics, namely, the C-Heuristic and the PC-Heuristic.

• C-Heuristic. The error margin is a fraction of the absolute
Q-value estimate of the action, i.e.,

επ(s0, a) = C · |Q̂πL(s0, a)|,
where C ∈ [0, 1] is a parameter.

• PC-Heuristic. The error margin has an additional state-
action dependent factor equal to the total probability of
next-states not covered while generating successors and
hence not used in estimating the Q-value, i.e.,

επ(s0, a) = D(s0, a) · C · |Q̂πL(s0, a)|,
where C ∈ [0, 1] and D(s0, a) = 1−∑

s′∈S1
Ps0s′(a).

The adjusted Q-value estimate of action a at s0 is then

Q̃πL(s0, a) =

{
Q̂πL(s0, a) + επ(s0, a), if a = π(s0)

Q̂πL(s0, a) − επ(s0, a), if a 6= π(s0)

Both MC policy rollout and DAG policy rollout return an
action â that maximizes the adjusted Q-value estimates for
s0, i.e.,

â ∈ arg max
a∈As

Q̃πL(s0, a).

Benchmarks
Our initial OPI benchmark set consists of the following 5
domains from the past International Probabilistic Planning
Competitions (IPPC): (1) Sysadmin, (2) Game of Life,
(3) Tamarisk, (4) Skill Teaching and (5) Wildfire. Each
domain comes with a standard set of 10 problems of varying
sizes and difficulty levels. Further details on the IPPC can
be found at (http://www.icaps-conference.org/index.php/
Main/Competitions). Both the domains and problems are
described using the Relational Dynamic Influence Diagram
Language (RDDL) (Sanner (2010)).

Sysadmin. This domain is about keeping as many com-
puters up as possible in a computer network. The state of a
computer is affected by the states of computers connected
to it besides an external random factor. Actions are to reboot
computers to bring them up. The immediate reward of a
state-action pair is the number of computers running minus
the action cost. The state space is factored with binary
state variables for the computers in the network. The size
of the state space ranges from 210 to 250 for the 10 problems.

Game of Life. This is a grid based domain with cells in
the grid either alive or dead. The goal is to have as many
cells alive as possible. The state of a cell is affected by
the states of the cells around it besides an external random
factor. Actions are to set cells to bring them alive. The
immediate reward of a state-action pair is the number of
cells alive minus the action cost. The size of the state space
ranges from 29 to 230 for the 10 problems.

Tamarisk. This domain is about eradicating an invasive
plant species called tamarisk to promote a native plant
species in a given region. The region is divided into reaches
each consisting of a certain number of slots. Tamarisk can
spread from a reach to an adjacent (downstream) reach.
Actions are to eradicate tamarisk or restore native species
in reaches. The immediate reward of a state-action pair is a
penalty for the number of slots invaded by and vulnerable
to tamarisk plus the action cost. The state space is factored
with two state variables per slot indicating the presence of
tamarisk or native species. The size of the state space can
range from 216 to 248 for the 10 problems.

Skill Teaching. This domain is about teaching a student a
given set of skills via hints and questions. There are prereq-
uisites for some of the skills. A student can attain medium
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C0 C0.1 PC0.1 C0.2 PC0.2 C0.3 PC0.3
Bad Base Policy W T L W T L W T L W T L W T L W T L W T L
Sysadmin 8 1 1 2 8 0 3 7 0 0 10 0 2 8 0 0 10 0 1 9 0
Game of life 10 0 0 8 2 0 9 1 0 5 5 0 7 3 0 2 8 0 5 5 0
Tamarisk 0 2 8 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
Skill Teaching 5 5 0 3 7 0 5 5 0 3 7 0 6 4 0 3 7 0 6 4 0
Wildfire 0 6 4 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0

C0 C0.1 PC0.1 C0.2 PC0.2 C0.3 PC0.3
Good Base Policy W T L W T L W T L W T L W T L W T L W T L
Sysadmin 0 2 8 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
Game of life 3 7 0 2 8 0 4 6 0 0 10 0 2 8 0 0 10 0 2 8 0
Tamarisk 0 0 10 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
Skill Teaching 0 10 0 1 9 0 0 10 0 0 10 0 1 9 0 0 10 0 0 10 0
Wildfire 0 9 1 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0

Table 2: WTL Scores for DAG Policy Rollout

C0 C0.1 PC0.1 C0.2 PC0.2 C0.3 PC0.3
Bad Base Policy W T L W T L W T L W T L W T L W T L W T L
Sysadmin 7 3 0 2 8 0 3 7 0 0 10 0 1 9 0 0 10 0 1 9 0
Game of life 8 2 0 6 4 0 8 2 0 2 8 0 6 4 0 1 9 0 6 4 0
Tamarisk 0 0 10 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
Skill Teaching 5 5 0 6 4 0 5 5 0 3 7 0 5 5 0 3 7 0 5 5 0
Wildfire 0 3 7 0 10 0 0 9 1 0 10 0 0 10 0 0 10 0 0 10 0

C0 C0.1 PC0.1 C0.2 PC0.2 C0.3 PC0.3
Good Base Policy W T L W T L W T L W T L W T L W T L W T L
Sysadmin 0 0 10 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0
Game of life 1 6 3 0 10 0 2 8 0 0 10 0 1 9 0 0 10 0 1 9 0
Tamarisk 0 0 10 0 9 1 0 9 1 0 10 0 0 10 0 0 10 0 0 10 0
Skill Teaching 0 9 1 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 1 9 0
Wildfire 0 4 6 0 10 0 0 9 1 0 10 0 0 10 0 0 10 0 0 10 0

Table 3: WTL Scores for MC Policy Rollout

proficiency in a skill if they know all the prerequisites. A
student can attain high proficiency if they have medium
proficiency in that skill and answer questions correctly.
Answering a question wrong can decrease the proficiency
level. Actions are to give hints or ask questions in skills.
The immediate reward is a bonus for high proficiency and
a penalty for medium proficiency in skills. The state space
is factored with six state variables per skill. The size of the
state space can range from 212 to 248 for the 10 problems.

Wildfire. This is about controlling the spread of fire in a
region modeled as a grid. A few cells are marked as targets
that need to be protected from fire. A grid cell with fuel
in it is more likely to burn if many of its neighbors are
burning and a burning cell continues to burn until the fire is
extinguished. Actions are to cut out fuel from cells or put
out fire in cells. The immediate reward for a state-action
pair is a penalty for burned out or burning cells plus an
action cost. The penalty is high for the target cells. The state
space is factored with two state variables per cell indicating
the presence of fuel and fire. The size of the state space can
range from 218 to 272 for the 10 problems.

Base Policies

We have two base policies for each problem making a total
of 100 base policies for the 50 problems. For each problem,
one of the base policies is of high quality, while the other is
of relatively poor quality. Table 1 shows the performance of
the two base policies. The numbers denote the average finite
horizon sum of rewards for 100 evaluation runs with 95%
confidence intervals. For the domains tamarisk and wildfire,
the two policies are of roughly the same quality.

All our base policies are Neural Networks (NNs) tak-
ing a factored state as input and returning a probability
distribution over actions as output. The action with the
highest probability is taken as the base policy action for the
state. We have used two distinct NN architectures for each
domain - a linear architecture and one with 3 hidden layers
and sparse connections defined by state-variable transitions.
The linear architecture performs best for sysadmin and skill
teaching, while the non-linear architecture performs best
for game of life, tamarisk and wildfire. We have adopted the
architecture, dataset and training method for the NN base
policies from (Issakkimuthu, Fern, and Tadepalli (2018)).
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Figure 1: Normalized Mean Scores for DAG Policy Rollout
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Figure 2: Normalized Mean Scores for MC Policy Rollout

Evaluation Metrics
We estimate the expected finite horizon sum of rewards of
the base policy and the OPI policy by taking the average
over 100 evaluation runs. In order to assess OPI policies
for performance degradation, we propose the following 3
evaluation metrics.

1. Win-Tie-Loss (WTL) Count. For each domain we
compute a triple of integers that add up to 10 (the number
of problems in the domain). The components W, T
and L stand for the number of wins, ties and losses
achieved by OPI against the base policies. The win, tie
or loss outcome for a problem is defined in terms of
the standard 95% Confidence Intervals (CIs) around the
mean performance of the base policy and the OPI policy.
If the CI of OPI is totally above the CI of the base policy
then the outcome is a win for OPI. If the CIs overlap
then the outcome is a tie. Otherwise it is a loss. Wins are
hard to achieve because the condition for wins is very
strict. The WTL count is a simple and natural measure of
the performance of OPI algorithms. OPI algorithms with
losses can be considered unreliable for the domain. OPI
algorithms with wider CIs will have many ties and no
losses, which might look fine under the WTL criterion.
This drawback can be addressed by using the following
metric along with WTL counts.

2. Normalized Mean Score (NMS). For each domain
we compute a single real number that indicates OPI
performance. The NM score of a domain is the average
of the NM scores of the 10 problems. The NM score for
problem k is defined in terms of the mean performance
of the base policy ν(k) and the mean performance of the
OPI policy ν′(k) for that problem, i.e.,

NMS(k) =
ν′(k)− ν(k)
|ν(k)| .

A positive normalized mean score indicates better
average improvement, a negative score indicates worse
average degradation and a zero score indicates equivalent
average performance of OPI for the domain.

3. Normalized Percentile Score (NPS). In addition to
NMS, another measure like the average of the bottom α%
of the 100 evaluation runs might be useful to ensure that
OPI does not crash badly when the base policy does not.
The NP score of a domain is the average of the NP scores
of the 10 problems. The NP score for problem k is defined
in terms of the average of the bottom α% of evaluation
runs of the base policy ζα(k) and the average of the bot-
tom α% of evaluation runs of the OPI policy ζ ′α(k) for
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Figure 3: Normalized Percentile Scores for DAG Policy Rollout
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Figure 4: Normalized Percentile Scores for MC Policy Rollout

that problem, i.e.,

NPSα(k) =
ζ ′α(k)− ζα(k)
|ζα(k)|

.

Positive, negative and zero NP scores indicate improved,
worse and equivalent low end average of OPI. NPS is
analogous to the notion of Conditional Value at Risk
(CVaR) in statistics.

Experiments
Here we provide an example of our evaluation procedure
for the DAG and MC OPI baselines. The primary goal is to
demonstrate the evaluation methodology and show that the
baselines are strong for both the cases when transition prob-
ability information is not available (MC with C-Heuristic)
and when the transition probability is available (DAG and
MC with PC-Heuristic).

Setup. The lookahead depth is 4 for both DAG and
MC policy rollout. Leaf nodes are set to zero. The number
of root actions is 8 or the number of actions applicable
whichever is less. These are the top 8 actions according
to the base policy probabilities and therefore include the

base policy action. The number of successors generated
for a state-action pair in the case of DAG policy rollout
is 3, i.e., b0 = b = 3. In order to compare DAG and MC
policy rollout results, we first run DAG policy rollout for the
current state and then run MC policy rollout for the same
amount of time. The number of rollout trajectories in MC
policy rollout can therefore vary from state to state.

The parameter C of the Q-value adjustment heuristic
takes values from the set {0, 0.1, 0.2, 0.3}. For MC policy
rollout with the PC-Heuristic, we record the successors of
the root state s0 for every action to compute D(s0, a) using
the true state-transition probabilities. In our experiments,
the planning horizon is 40 and actions are limited to
those with at most one action bit set. Our experiments
were run on a HPC cluster with the RDDLSim library
(https://github.com/ssanner/rddlsim) for evaluation.

Notation. In all the tables and charts, the labels Cx
and PCx have been used to denote OPI policies with
different Q-value adjustment heuristics. Cx stands for the
C-Heuristic with parameter C set to value x. PCx stands for
the PC-Heuristic with parameter C set to value x. C0 cor-
responds to the OPI policy without Q-value adjustment as
it is equivalent to the first heuristic with parameter C set to 0.
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WTL Results. Tables 2 and 3 show the WTL scores
for DAG and MC policy rollout for the two base poli-
cies. The first major observation is that both DAG and
MC rollout without Q-value adjustment (C0) have many
losses across the domains. This is particularly the case for
the higher-quality base policy, which is frequently degraded.

Next, we consider the influence of C on performance. We
see, as expected, that as C increases the number of losses
decreases and the wins tend to increase. In particular, for
C > 0 there are only a very small number of losses and no
losses for C ≥ 0.2. At the same time we see that in 3 of
the domains there are a significant number of wins for the
lower-performing base policy even for the largest value of
C = 0.3. There are zero wins for the high-performing base
policy, which is due to the strict conditions under which
we judge a win (non-overlapping confidence intervals). We
will see later, however, that even in these cases there is
improvement when considering the expected values.

Next, comparing the results for Cx versus PCx, we see
that including the probability of states ”not covered” typi-
cally results in more wins without a substantial increase (or
any increase) in losses. This, shows that the PCx heuristic is
able to effectively modulate the Q-value adjustment on a per
state-action basis to improve OPI performance. This shows
that when transition probabilities or good estimates are
available, PCx can be an effective approach to maintaining
safety while improving performance.

Finally, we see that the DAG policy rollout generally
performs better that the MC approach in terms of total
number of wins while not increasing the number of losses.
This shows that there can be value in reuse of MC samples
in a DAG structure and also exploiting the transition model
within the DAG model compared to a pure MC approach.
The design space of DAG structures used for value estima-
tion is large and it is reasonable to expect that optimization
of the structure could result in further improvement.

Overall, the results indicate that the DAG and MC ap-
proaches offer a strong parameterized space of baselines for
safe OPI that span different WTL trade-offs for comparison
to other approaches. In particular, MC offers a baseline
that requires no information about transition probabilities,
while DAG is able to exploit transition information when
available. The results also indicate that with respect to
number of wins, there is significant room to improve over
the baselines for the higher-quality base policy.

Normalized Mean Scores. The bar charts in Figures
1 and 2 show the NMS for DAG and MC policy rollout
for both the base policies. We first see that for both DAG
and MC policy rollout the scores are positive in sysadmin,
game of life and skill teaching for the bad base policy
and somewhat positive in game of life for the good base
policy. Rather, the scores are negative or close to zero
everywhere else. The scores are particularly negative for the
case of no Q-value adjustment (C0). Increasing the value

of C largely mitigates the degradation and including the
“missing probability” into the adjustment tends to be better
Finally, again, DAG policy rollout performs slightly better
than MC policy rollout, showing the baselines are able to
leverage the availability of transition probabilities for better
performance.

Normalized Percentile Scores. The bar charts in Figures
3 and 4 show the NPS for the bottom 5% evaluation runs
for DAG and MC policy rollout for both the base policies.
These results are qualitatively similar to those for NMS.
However, we do see that the NPS values tend to be higher
than the corresponding NMS values. This indicates that the
baseline OPI methods are generating more improvement or
less degradation for the lower end of the performance profile
(NPS) compared to the mean performance. In other words,
these OPI baselines are suggesting they are particularly
effective at improving worst case performance.

Summary
In this work, we have drawn attention to the important prac-
tical issue of policy degradation in OPI. We have proposed
benchmarks and evaluation metrics for OPI with the goal of
improving our understanding of the empirical performance
of OPI algorithms. We have also presented OPI baselines
with a heuristic to deal with policy degradation. The base-
lines form a class of methods that can use transition proba-
bilities if available or only utilize samples. The parameter-
ized baselines are demonstrated to span the trade-off space
of OPI performance, making them useful points for future
comparison. Further, the baselines demonstrate benefit from
using transition probability information, making them useful
for comparing to evaluation settings with and without that
information. The DAG-based baseline makes better use of
samples by constructing a search DAG instead of discard-
ing sampled trajectories. It will be interesting to consider
future extensions that continue to search off-policy actions
within the DAG rather than only at the root. Overall, we hope
that this work helps set the stage for more work on safe OPI
algorithms backed by solid evaluations and comparisons to
strong baselines.
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Abstract

Effectively using a planning system as the executive of an
agent acting in real time poses a variety of challenges in in-
tegrating planning and execution. Many integrated systems
have been developed with a focus on particular challenges,
and it has been typically difficult to test, benchmark, and com-
pare these systems. To do so requires a benchmark that has
transparent and well-defined rules, and can be adapted to ex-
hibit the problem characteristics of interest. In this paper, we
propose a new benchmark simulation for integrated planning
and execution, designed to be accessible and adaptive. We
describe the simple core scenario of the simulation and how it
can be configured to present more challenging scenarios. We
describe our plans for the development of the simulation as a
competition, benchmarking, and teaching tool, and encourage
the community to contribute to its design.

1 Introduction
Planning systems are a natural approach to the deliberative
control of autonomous systems. Different integrations of
planning systems into the executives of autonomous systems
results in a diverse set of systems (Muscettola et al. 2002;
McGann et al. 2008; Niemueller, Hofmann, and Lakemeyer
2019). The International Planning Competition (IPC) tack-
les the comparison of planning systems through its multiple
tracks. However, comparing and benchmarking planning ex-
ecutives poses an interesting challenge. Planning system and
execution capabilities are often developed together, making
it hard to decouple the reasoning from the execution environ-
ment.

In this paper, we introduce the initial design of the CRAFT-
BOTS simulation for benchmarking and comparing planning
and execution systems. CRAFTBOTS simulates a logistics sce-
nario for one or more actors. The simulation consists of a
minimal core scenario that can be configured with a variety of
additional modules to introduce more sophisticated problem
characteristics.

Our goal is to make the simulation available for research,
competition, and teaching. Thus, our main considerations in
the design and implementation of CRAFTBOTS is to be

1. light-weight and portable. The simulation is written en-
tirely in Python3 with no external dependencies. This will
facilitate ease of use for teaching, lower the barrier of entry

for planning or executive systems, and provide a starting
point for additional enhancements.

2. accessible - the API is as simple as possible, exposing a set
of Python3 methods. Interfaces to adapt to other platforms
are planned, such as a ROS actionlib server (Quigley et al.
2009), OpenAI Gym environment (Brockman et al. 2016),
and High-Level Robot API1. This should allow existing
systems for planning and execution, such as the CLIPS
agent (Niemueller, Hofmann, and Lakemeyer 2019) and
ROSPlan (Cashmore et al. 2015) to be directly applied to
this scenario.

3. adaptable to different execution requirements, so that
users can configure the simulation to test approaches
for handling non-determinism, temporal constraints, over-
subscription, or other combinations of problem character-
istics.

The simulation is still under active development, but the work
in progress is available as open-source software2 with open
issues and discussion pages.

One motivation of CRAFTBOTS is to provide a foundation
for a planning and execution competition. The idea of the
competition is not to organise an event with one or more
tracks, but instead to host an online competition open to
submissions all year round, similar to the Sparkle challenge3.
The competition leader-board can be filtered by problem
characteristics, based on the simulation configuration. Results
and insights from the competition can then be presented each
year at ICAPS. As the timestamped events of a completed
simulation can be efficiently saved, it would be possible to
present and host complete replays as well as scores.

The software also has great potential as a teaching resource,
enabling students to participate in the open competition. In
addition to documentation of the code, we aim to produce a
series of tutorials and exercises on intelligent control, sup-
ported by the simulation. This would allow students to submit
their coursework to the competition to broaden participation,
but also allows students to directly compare their submission
against the state-of-the-art.

The aim of this paper is to foster discussion at this early
stage of the project. We are looking to gather insight into

1https://github.com/DFKI-NI/high level robot api
2https://github.com/strathclyde-artificial-intelligence/craft-bots
3https://ada.liacs.nl/events/sparkle-planning-19/
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what challenges and problem properties should be embodied
by the simulation, to foster engagement in future competi-
tions, and to guide the development of the simulation and
teaching materials into a product that is ultimately useful to
the community.

1.1 Other simulators
The CRAFTBOTS scenario takes inspiration from the Robocup
Logistics League (RCLL). RCLL focuses on in-factory logis-
tics applications for teams of mobile robots4. A simulation
of the RCLL scenario has been used for competitions with
integrated planning and scheduling (Niemueller, Lakemeyer,
and Ferrein 2015; Niemueller et al. 2016) beginning in 20175.
The simulation is built using Gazebo, a LUA-based behaviour
engine, and the Fawkes Robot Software Framework adapted
from the publicly released software stack of the Carologistics
RoboCup team (Niemueller, Reuter, and Ferrein 2015). The
simulation is also open source and has included a built-in
executive based on ENTERPRISE: PIKE (Levine and Williams
2014), and ROS interface based on ROSPlan (Cashmore et al.
2015). The simulation poses a realistic challenge in the in-
telligent control of a mobile robot team, in planning and
scheduling, plan execution, and interfacing with the robot’s
sensors and behaviours. In contrast, CRAFTBOTS focuses on
providing challenges in the planning and execution, while
simplifying the interface and underlying architecture required
to run the simulation. This presents a more accessible alterna-
tive to RCLL that can be used to develop, test, and benchmark
systems, while the underlying challenges are similar enough
that those systems could be subsequently ported to control a
RCLL robot team.

The RoboCup Rescue Agent Simulator, or ROBORESCUE,
models a situation immediately following a natural disaster
(Sheh, Schwertfeger, and Visser 2016). It is the basis of the
RoboCup Rescue Simulation League (Akin et al. 2012), an
international competition for collaborative AI agents since
2000. There are one physical and two simulated competi-
tions held annually6. The Virtual Robot League is a detailed,
high fidelity physics simulator within the confines of one
city block and faces many of the same kinds of challenges
we mentioned for RCLL. The Simulation League focuses on
environments the size of a few city blocks. The simulator for
this is written in Java and has a long history of code based on
past competitors; in fact the simulator has some very sophisti-
cated simulation capabilities and includes some baseline code
to facilitate programming new agents. In our studies (Roberts
et al. 2021), we were able to demonstrate how to connect
a cognitive system that performed a centralized dispatcher
function. This was a challenging task that required under-
standing a complex suite of interacting software components.
While we enjoyed the flexibility and richness of the simu-
lation environment provided by the server, we found that it
took considerable time to start programming agents because
so much time was invested in understanding the underlying
architecture relative to the time invested in the aspects of

4https://ll.robocup.org/
5http://www.robocup-logistics.org/sim-comp
6http://wiki.robocup.org/Rescue Simulation League

planning and execution that drew us to the simulator.
A middle ground between a realistic 3D environment and

something that is accessible is found in the CrazySwarm
(Preiss et al. 2017). This is a lightweight Python control en-
vironment for teams of physical or virtual micro-quadrotor
systems. Each vehicle can accept commands to takeoff, land,
and move to specific locations. The ”simulator” in this en-
vironment is a simple matplotlib viewer that can augment
physical vehicles or simulate a virtual-only environment,
allowing client code to easily switch between controlling
physical or virtual robots. In our studies we found this en-
vironment easy to use and were able to quickly mock up
scenarios, in Python, by calling a PDDL planner and linking
it to a goal reasoning system (Roberts et al. 2021), though
we had to write a small amount of executive and interfacing
code. The downside of the environment lies in its simplicity;
programming sophisticated behaviors, or adding new ones,
requires writing controller code for the specific quadrotor
platform. Adding new vehicles, or new behaviors, would re-
quire considerable programming, which often does not align
well with running suites of experiments for testing how the
planning and executive impact performance.

The microRTS game (Ontañón 2013) is a simple grid-
world environment that has the kind of ease of use and flexi-
bility for scenario generation we anticipate for CRAFTBOTS.
Inspired by the Starcraft game, a Real-time Strategy (RTS)
game, opponents must gather resources, construct buildings
and forces, and protect or invade other territories. The mi-
croRTS has been used to demonstrate integrated execution
of Hierarchical plans (Kantharaju, Ontañón, and Geib 2018)
and has been featured in several competitions7. CRAFTBOTS
has similar resource constraints but features more of a long-
term cooperative situation than the competitive style of RTS
games. Also, CRAFTBOTS will feature mechanisms to in-
crease the difficulty of scenarios in several ways (e.g., online
goal arrival or deadlines).

A suite of simulators have been used in learning contexts,
the most notable and recent of which is the gym environment
(Brockman et al. 2016). Gym is a standard interface for inter-
acting with simulation environments that allows rapid learn-
ing. Although there are many environments we could discuss,
we focus on a few that are the most appropriate for integrated
planning and acting. The Malmo simulator (Johnson et al.
2016) provides a python interface to the 3D sandbox game of
Minecraft and has been used in several competitions, the most
recent of was MineRL8, which provided a Gym interface for
Malmo and challenged competitors to learn from recorded
human players. Another Gym environment that shares several
properties with our ideal system mentioned in the introduc-
tion is Gym-Minigrid (Chevalier-Boisvert, Willems, and Pal
2018), which is is a gridworld environment where an agent
takes discrete cardinal actions to move between rooms to
collect items or visit target cells. Finally, PDDLGym9 is a
suite that converts STRIPS PDDL files to gym environments
to facilitate using a simulator for executing plans. The Gym

7https://sites.google.com/site/micrortsaicompetition/home
8https://minerl.io/
9https://github.com/tomsilver/pddlgym
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environment is designed to advance the study of Reinforce-
ment Learning and is thus focused on episodic interaction
between an agent and its environment. Integrating planning
approach into this framework is possible, but it can require
considerable effort to craft a set of scenarios to study one
aspect of integrated planning and execution. Further, one has
to implement (or learn) controllers for each of the actions
that one would want agents to perform in a gym environment.
In contrast, CRAFTBOTS will provide a set of standard con-
trollers for actions and will also provide a suite of benchmark
problems for researchers to test against.

2 Simulation Description
In this section we describe the core scenario of the simula-
tion. Then we describe the additional modules that can be
configured and characterise the problem properties that they
introduce.

2.1 Core Scenario Description
The proposed scenario consists of agents that can move
around the environment to collect resources of different types.
The environment is represented as a network of nodes, and is
illustrated in Figure 1. Agents in the world move around this
network to collect resources (coloured triangles) from mines
(coloured circles) and build structures (coloured, stacked
polygons) at specified locations. We provide more details
about these components and their interactions below.

Agents build structures to complete task goals. A task goal
specifies the set of resources required to build a structure,
and the node at which it should be built. Once a structure is
built at that node with the required materials, then the agent
increases its score an amount proportional to the number of
resources. The agent should try to maximise its score over a
finite horizon.

Resources can be gathered at nodes which contain a mine
of that resource type. Each agent can carry only a limited
amount of resources at one time. Task goals are to use these
resources to build structures in specified locations. A task
goal specifies the location and required resources for a struc-
ture. Achieving these goals scores points for the team.

A scenario is generated from a configuration file and ran-
dom seed, and the simulator responds to commands through
the Python3 API. The command interface can be run is
threaded (the simulation will continue running and process
commands as they arrive) meaning that planning and other
reasoning must be made in real-time.

The core scenario contains a set of deterministic actions
with fixed duration, described below. Additional modules
introduce non-deterministic action durations and outcomes,
properties unique to each resource type, and structures that
can be optionally built to provide beneficial effects.

Actions Agents are each able to perform actions one at a
time. If the simulation is configured to contain more than
one agent, agents can perform actions in parallel. Unless
otherwise specified, the actions have a very short non-zero
duration.

• M O V E: the agent moves between two nodes of the graph
provided that the nodes are connected. The action has a
duration proportional to the length of the connection.

• D I G: When the agent is at a node that contains a mine,
the agent produces one resource of the mine’s resource
type. The resource appears on the ground at that node. The
action has a constant duration.

• P I C K - U P: The agent collects a resource on the ground in
the same node and adds it to the agent’s inventory.

• D R O P: The agent removes one resource from its inventory
and adds it to the ground at the current node.

• C R E AT E - S I T E: Creates a new construction site, corre-
sponding to a specific set of required materials.

• D E P O S I T: The agent removes one resource from its in-
ventory and adds it to a site at the current node. Resources
cannot be recovered once deposited into a site.

• C O N S T R U C T: Progresses the completion of a site at the
current node. The completion is bounded by the fraction
of required resources that have been deposited. Once com-
plete, the site will transform into a completed building.
The action increases the completion at a fixed rate and has
a variable duration as it can be preempted at any time.

2.2 Additional Modules
In this section we describe the modules that can be enabled to
increase the scenario difficulty or introduce specific problem
characteristics, and our motivation for each.

Resource Properties There are five types of resource (and
corresponding mines), currently identified by a color code.
Each resource type has a property that can be enabled.

• B L A C K: takes up the entire inventory of the agent. Thus,
any agent carrying one Black resource is unable to carry
any other resources at the same time.

• B L U E: The D I G action for blue resource takes 12x longer
than for other resources.

• R E D: can only be mined within known time intervals,
defined in the configuration file. The mining action must
start and finish within the interval.

• O R A N G E: requires two or more agents to cooperate at
the same node, performing the D I G action together. Only
one orange resource is produced.

• G R E E N: decays over time. It will vanish from the node,
site, or agent’s inventory a fixed time after it is produced.

The black resource prevents enterprising agents from stock-
piling all resource types in their own inventory. The blue, red,
and green resources combine with the deadlines module de-
scribed in the next section to introduce temporal constraints
to the problem. The green resource also adds an exogenous
process to the problem that is surprisingly tricky to model in
temporal PDDL (Fox and Long 2003). The orange resource
introduces required coordination between two agents.
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Figure 1: Work-in-progress graphics for CRAFTBOTS. The full simulation (left box) shows the nodes and network and enlarged
section (right). Agents are shown as grey circles, mines as coloured dots, sites as stacked polygons, resources as coloured
triangles. For example, in the enlarged view there are two agents carrying blue resources while there are yellow and red sites in
the upper left.

Dynamic Goals, Deadlines, Oversubscription These
three modules follow the examples set by the Robocup Lo-
gistics scenario.

• The simulation can be configured to produce dynamic task
goals according to a randomised schedule.

• Each task goal can be associated with a deadline, by which
time the building must be completed or it will not score
points.

• Finally, the number of goals and tightness of deadlines
stated in the initial state of the simulation, or produced
according to the randomised schedule, will mean only a
subset of the goals will be possible to complete.

Temporal Uncertainty Actions can be configured to have
uncertain duration by specifying the mean and standard devi-
ation duration for each action type.

Non-deterministic Actions Actions can be given config-
ured to have a probability of failure. The effects of a failed
action depend upon the action type. Digging actions end im-
mediately without producing a resource; pick, drop, deposit,
and start site actions will simply fail to produce their effects;
failed movements result in the agent reversing direction to-
wards the origin node and optionally disable the connection
for a period of time; failed construct actions end immediately
and halve the current progress of the building.

Building Properties In addition to the buildings required
as the task goals, the agents are able to build additional build-
ings that do not score points, but provide a passive bene-
fit. There are currently four different buildings available for
agents to construct.

• B AT T E RY: increases the movement speed of the agents.
Each constructed battery decreases the duration of move-
ment times by 10 percentage points (pp), to a maximum
of 50pp.

• M A N A G E M E N T: increases the construction speed of
the agents. Each constructed management increases the
progress rate of the construction action by 10pp, to a max-
imum of 100pp.

• T O O L S: decrease the time required to mine resources.
Each constructed tools decreases the duration of movement
times by 10pp, to a maximum of 50pp.

• M I L L S: increase the inventory capacity of all agents. This
does not affect the property of the black resource.

These buildings are intended to present an interesting
choice between focusing immediate efforts on collecting
points, or investing into improving the situation in order to
more easily gather points in the future. This choice requires
reasoning about the horizon of the scenario.

3 Conclusion
We believe the core scenario presents a fairly simple problem
to be planned for and enacted, and that by enabling all of the
additional modules described above, the scenario represents
a very challenging domain for both planning and execution.
We also intend to include additional modules that introduce
partial observability and limited communication between
agents. We are bringing this to the Workshop on the IPC
because we believe this workshop to be the best venue to
gather feedback about which features and priorities are of the
greatest interest for the planning community.
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