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Abstract
Several hierarchical planning systems feature a rich
level of language features making them capable
of expressing real-world problems. One such fea-
ture that’s used by several current planning sys-
tems is causal links, which are used to track search
progress. The formalism combining Hierarchical
Task Network (HTN) planning with these links
known from Partial Order Causal Link (POCL)
planning is often referred to as hybrid planning. In
this paper we study the computational complexity
of such hybrid planning problems. More specif-
ically, we provide missing membership results to
existing hardness proofs and thereby provide tight
complexity bounds for all known subclasses of hi-
erarchical planning problems. We also re-visit and
correct a result from the literature for plan verifica-
tion showing that it remains NP-complete even in
the absence of a task hierarchy.

1 Introduction
Hierarchical planning has attracted much attention in the last
decade [Bercher et al., 2019]. Although there are many dif-
ferent variants of hierarchical planning formalisms [Bercher
et al., 2016; 2019], the de-facto “standard” variant is referred
to as Hierarchical Task Network (HTN) planning [Erol et al.,
1996; Bercher et al., 2019]. Most of the progress of recent
years in hierarchical planning – particularly with regard to
theoretical investigations – was done for this HTN planning
formalism [Bercher et al., 2019]. Several systems capable of
solving HTN planning problems are however capable of deal-
ing with more complex problem descriptions that go beyond
those of standard HTN planning. One such extension of HTN
planning integrates causal links known from Partial Order
Causal Link (POCL) planning [Penberthy and Weld, 1992;
Weld, 1994] into the model and planning process – the result-
ing framework is sometimes referred to as hybrid planning
[Kambhampati et al., 1998; Biundo and Schattenberg, 2001;
Biundo et al., 2011; Bercher et al., 2016; 2017].

Several recent hierarchical planners rely on a search in
the space of partial plans that exploit causal links to track
progress, such as one of the PANDA planners [Bercher et
al., 2014; 2017]; the temporal planner FAPE [Bit-Monnot

et al., 2016; 2020] the runner-up of the partial-order HTN
track of the International Planning Competition (IPC) 2020
pyHiPOP [Bechon et al., 2014; Lesire and Albore, 2021];
HATP [Sebastiani et al., 2017; Lallement et al., 2018] and
CHIMP [Stock et al., 2015], two recent hierarchical planners
for robotics; as well as a planner for the generation of nar-
ratives [Winer and Young, 2017]. Several POCL-based hier-
archical planning formalisms furthermore allow for the com-
pound tasks to specify preconditions and effects, just like the
primitive tasks (i.e., the actions known from classical plan-
ning) do [Yang, 1990; Young et al., 1994; Kambhampati et
al., 1998; Biundo et al., 2011; Bechon et al., 2014; Lesire
and Albore, 2021; Bercher et al., 2016; 2017] so they can be
producers or consumers of causal links as well.

Knowing about the computational complexity of such hy-
brid models is not just an important theoretical insight in gen-
eral, but since each search node can be interpreted as a plan-
ning problem itself, theoretical insights can also serve as the
basis for problem relaxations and hence heuristics for such
planners. Since hybrid problems extend the capabilities of
standard HTN problems (by means of preconditions and ef-
fects of compound tasks as well as causal links), these prob-
lems are at least as hard as HTN problems [Bercher et al.,
2016]. However, it is unclear whether the presence of causal
links and the way they restrict possible decompositions makes
these problems computationally harder, i.e., membership re-
sults were not provided. We here close this gap and conduct a
comprehensive complexity analysis for hybrid planning prob-
lems by studying the computational complexity of all known
special cases on the task hierarchy from the hierarchical plan-
ning literature [Erol et al., 1996; Alford et al., 2012; 2015a].
We also correct a result from the literature for hybrid plan
verification and show that for primitive problems it’s not in P,
but NP-complete. A minor contribution is our formalization
itself as we make some simplifications to the one by Bercher
et al. [2016] that not only make it easier to grasp, but this also
resolves issues with the previous one.

2 Background
2.1 Hybrid Planning Formalization
In HTN planning there are two kinds of tasks: primitive tasks,
the actions known from classical (non-hierarchical) planning;
and compound tasks, which represent abstractions of var-



ious other primitive and compound tasks, each collection
is grouped together by a so-called decomposition method.
Problems are described in terms of an initial collection of
such tasks, and the goal is to find a refinement into an exe-
cutable plan consisting of primitive actions.

What we refer to as hybrid planning in this paper is a
straight-forward extension of standard HTN planning by two
concepts known from POCL planning [Penberthy and Weld,
1992; Weld, 1994], namely causal links and enabling com-
pound tasks to specify preconditions and effects. Causal links
“protect” task preconditions and make sure that they don’t
become false in the interval over which the link spans (for-
mally defined later). For our problem formalization we heav-
ily base upon the hybrid planning formalism by Bercher et
al. [2016], which in turn extends the HTN formalism by Geier
and Bercher [2011], for which most complexity results were
shown – e.g,. for plan existence [Geier and Bercher, 2011;
Alford et al., 2014; 2015a; 2015b], plan verification [Behnke
et al., 2015], model adaptations [Behnke et al., 2016; Lin
and Bercher, 2021], and reasoning about landmarks and com-
pounds tasks’ guaranteed (i.e., inferred) preconditions and
effects [Höller and Bercher, 2021; Olz et al., 2021]. There
are also more expressive HTN formalisms that allow, for ex-
ample, the expression of state constraints on decomposition
methods [Erol et al., 1996], external conditions for methods
[Tsuneto et al., 1998], and method preconditions [Nau et al.,
2003]. We don’t expect that the inclusion of such features
would change the presented results (other than complicating
the proofs), but didn’t look into this yet.

A set of facts F is used to describe state properties. The
set of states S is given by 2F . Actions known from classical
planning are referred to as primitive tasks. Their precondi-
tions and effects induce state transitions as usual (see below),
but since plans are partially ordered, we use causal links to
track which preconditions are satisfied, and by which action
the respective precondition is provided. For reasons that will
become clear later, we require all preconditions and effects to
be labeled. The labeling is provided by a function δ that maps
primitive and compound task names N = Np ∪ Nc to pairs
of label and fact. Formally, δ : N → 2N×F × 2N×F × 2N×F .
Let p ∈ Np ⊆ N be a primitive task name and δ(p) =
(prec, add , del). Let prec′, add ′, del ′ ⊆ F refer to the fact
component of each respective entry. Then, p is applicable in a
state s ∈ S, if and only if prec′ ⊆ s. If applicable in s, p leads
to s′ = (s \ del′) ∪ add ′. Applicability of action sequences
is defined in the usual way by repeated action application.

We can now define plans (which in the context of HTN
planning would be referred to as task networks), the most
central concept in hierarchical planning. Plans are partially
ordered sets of primitive and compound tasks, augmented by
causal links. Ordering constraints and causal links are defined
upon a set of plan steps (arbitrary symbols/labels) rather than
on the task names directly to enable tasks to occur multiple
times in the same plan.

Definition 1 (Plan). A plan P over a set of task names N is
a 4-tuple (PS,CL,≺, α), where:

• PS is a finite (possibly empty) set of plan steps,
• CL ⊆ (N × PS) × F × (N × PS) is a set of causal

links. Let (〈i, ps〉, f, 〈i′, ps′〉) ∈ CL. Then, (i, f) ∈
add(α(ps)) and (i′, f) ∈ prec(α(ps′)). We call ps the
producer, ps′ the consumer, and f ∈ F the protected
condition of that causal link.

• ≺ ⊆ PS × PS is a strict partial order. We require
(ps, ps′) ∈ ≺ for all (〈i, ps〉, f, 〈i′, ps′〉) ∈ CL, where
α(ps) and α(ps′) are primitive.

• α : PS → N labels every plan step with its task name.
PN denotes the set of all plans over the task namesN . A plan
is primitive if {α(ps) | ps ∈ PS} ⊆ Np.

We will define the semantics of causal links after we pro-
vided the formal problem definition. Our definition of hy-
brid planning problems significantly builds upon Def. 2 by
Bercher et al. [2016], but makes two noteworthy changes:
First, we restrict to positive action preconditions, which sim-
plifies the formalism without sacrificing expressivity [Behnke
et al., 2020]. Second, we exploit our newly introduced
precondition/effect labels in the definition of decomposition
methods. This slightly extends the syntactic problem defini-
tion, but it will pay off by significantly simplifying the defini-
tion of task decomposition and we will gain beneficial prop-
erties as discussed later when defining decomposition.

Definition 2 (Hybrid Planning Problem). A hybrid planning
problem is a 6-tuple π = (F,Nc, Np, δ,M, P I ), where:

• F is a finite set of facts,
• Let N := Nc ∪Np with Nc ∩Np = ∅, and:

– Nc is a finite set of compound task names,
– Np is a finite set of primitive task names,
– {init , goal} ⊆ Np denote two special primitive

task names encoding the initial and goal state,
• δ : N → 2N×F × 2N×F × 2N×F is a function mapping

task names to their labeled preconditions and effects.
For convenience, we also write δprec , δadd , and δdel to
refer to the three co-domain components of δ.

• M is a finite set of decomposition methods, each m ∈
M having the form m = (c,CL 7→, P ), with c ∈ Nc,
P ∈ PN\{init,goal} a plan, and CL7→ : N → N × PS
defining a mapping from c’s preconditions and effects to
those of plan steps PS in P . We require CL7→ to contain
exactly one entry for each precondition and effect of c.

• P I = (PSI , CLI ,≺I , αI ) ∈ PN , is the initial plan. It
contains two plan steps psI , psG ∈ PSI such that:

– αI (psI) = init and αI (psG) = goal , and
– psI ≺ psG and for all ps ∈ PSI with ps /∈
{psI , psG} holds psI ≺ ps ≺ psG.

Having the syntactic problem definition at hand, we need
to define the set of solutions. In hierarchical planning this
requires transforming the initial plan into a solution plan by
adhering the available decomposition methods which are ap-
plied to refine compound tasks into more primitive courses of
action. Since those tasks can be involved in causal links, we
first provide all formal definitions involving them.

First, recall that causal links are elements from (N×PS)×
F × (N× PS). Normally, causal links only specify the pro-
tected condition as well as the two involved plan steps [Pen-
berthy and Weld, 1992; Weld, 1994; Bercher, 2021]. We,
however, also include a label for each step since compound
tasks may use some effect multiple times to get inherited to



different subtasks. One could even define some effect both
as add and delete effect for that reason. The specification of
the protected condition therefore even becomes redundant be-
cause also preconditions and effects are labeled, so providing
just the labels in causal links would be sufficient to identify
their protected condition. We provide that condition anyway
for the sake of readability.

Let’s start with the case where a causal link spans be-
tween two primitive tasks. Let P = (PS,CL,≺, α), cl =
(〈i, ps〉, f, 〈i′, ps′〉) ∈ CL, and α(ps), α(ps′) ∈ Np. The
link cl now ensures that f (with (i, f) ∈ add(α(ps)) and
(i′, f) ∈ prec(α(ps))) will hold from the state in which ps
produces it until it is required by ps′. This will be ensured
by the solution criteria (defined later) that prevents causal
threats, i.e., each action with a delete effect f has to be or-
dered either before ps (promotion) or behind ps′ (demotion).

Causal links can however also involve compound tasks. In
contrast to primitive actions, the preconditions and effects
of compound tasks just indicate that these facts are required
or produced by some subtasks. This implies that some pre-
condition might be required by some subtask, whereas an-
other might be required by another – and thus in different
states. Potentially two compound task preconditions or ef-
fects could even be mutex since the respective subtasks are
not bound to be executed in the same state. This is in contrast
to compound task preconditions or effects that are required
to hold in the same state [Olz et al., 2021], but this rather
loose/weak semantics appears to be widely deployed in var-
ious hybrid formalisms [Bercher et al., 2016]. The labels of
compound tasks’ preconditions and effects further allows the
mapping CL 7→ to specify where each compound task’s pre-
condition/effect originates from. These will be the plan steps
to which the respective causal link will be inherited down.

Definition 3 (Decomposition). Let P = (PS,CL,≺, α)
be a plan and ps ∈ PS with α(ps) = c. Assume m =
(c,CL7→, Pm) ∈ M with Pm = (PSm, CLm,≺m, αm).
W.l.o.g. we can assume PS∩PSm = ∅. Now,m decomposes
ps in P into P ′ = (PS′, CL′,≺′, α′) if and only if:

• PS′ = (PS \ {ps}) ∪ PSm

• CL′ = (CL \ CL1) ∪ CLm ∪ CL2 ∪ CL3, with
CL1 = {(〈i, ps′〉, f, 〈j, ps′′〉) ∈ CL | ps ∈ {ps′, ps′′}}
CL2 = {(〈i, ps′〉, f, 〈k, psm〉) | (〈i, ps′〉, f, 〈j, ps〉) ∈ CL,

CL7→(j) = (k, psm)}
CL3 = {(〈k, psm〉, f, 〈j, ps′〉) | (〈i, ps〉, f, 〈j, ps′〉) ∈ CL,

CL 7→(i) = (k, psm)}
• ≺′ = (≺1 ∪ ≺m ∪ ≺2 ∪ ≺3) with
≺1 = (≺ \ {(ps′, ps′′) ∈ ≺ | ps ∈ {ps′, ps′′}})
≺2 = {(ps′, psm) | psm ∈ PSm, (ps

′, ps) ∈ ≺} ∪
{(psm, ps′) | psm ∈ PSm, (ps, ps

′) ∈ ≺}
≺3 = {(ps′, psm) | (〈i, ps′〉, f, 〈j, ps〉) ∈ CL,

CL 7→(j) = (k, psm), α(psm) ∈ Np} ∪
{(psm, ps′) | (〈i, ps〉, f, 〈j, ps′〉) ∈ CL,

CL 7→(i) = (k, psm), α(psm) ∈ Np}
• α = (α \ {(ps, c)}) ∪ αm

We write P →∗D P ′ if there is a (possibly empty) sequence
of decompositions refining P into P ′. In that case we call P ′

a C1
a

P1
¬a

P2
aC2 C1

a

m2

P3

P4

C2

m4

P3 P5

m3

P6
a

m1

Figure 1: The left side depicts a plan plus the initial sate and goal
description (shown as black vertical bars). Primitive tasks are de-
picted by boxes and use use Pi as a name, compounds tasks have
rounded corners and are called Ci. Plans of decomposition methods
are shown in dashed boxes with round corners, dashed arrows show
which methods are available for the respective compound tasks.
Within each plan, solid arrows indicate ordering constraints, and
solid edges causal links. Dashed edges within plans illustrate the
respective method’s map CL7→ by showing to which subtasks pre-
condition or effect a causal link would get inherited should it be set.

reachable from P . Let Pc denote a plan containing just the
compound task c. If Pc →∗D P ′′ and the task t is contained in
P ′′, then we say that t is reachable from c.

This definition is a significant simplification of Def. 3 by
Bercher et al. [2016] due to the fact that decomposition meth-
ods now specify how causal links get inherited down. Ac-
cording to the previous definition, each matching precondi-
tion of a subtask could be used for this purpose thus poten-
tially producing up to an exponential number of successors in
the search space for just a single decomposition. This could
have happened when the decomposed compound task is in-
volved in n causal links, and each could be inherited to m
compatible subtask preconditions/effects, in which case there
will be O(nm) successors. Our definition resolves this issue
since each decomposition now results into exactly one suc-
cessor node – as is also the case in HTN planning.

Example Before we move on defining the solution criteria
we want to illustrate our definitions using Fig. 1. It provides
an example for an initial plan, decomposition methods, and
their mappings CL7→ (see the caption for explanations). On
top of this, it also illustrates that even a single method can
pose different constraints depending on the causal links its
compound task is involved in (its impact therefore becomes
context-sensitive). More specifically it shows that we are not
allowed to only consider a method (i.e., its inheritance map)
to decide upon the constraints it induces but rather we need
to check whether the task it composes serves as producer or
consumer of causal links. For example, consider the totally
ordered method m2 and assume for the sake of argument
that all other methods and the initial plan were also totally
ordered (we’ll re-visit this figure where we’ll need the partial
order). Its map CL7→ shows that any link protecting C1’s
precondition a will be inherited down to P2. First, note that
in a total-order setting the producer of this a would come
become before C1, so any such link would span over C2. Yet,
this does not mean that we are allowed to remove all methods



from the subplans reachable from C2 from the model that
delete a (e.g., in a preprocessing step) – because m2 might
also be used in a different plan where C1 will not have this
causal link yet. This may be done for the instance of m2

that’s used to decompose the C1 that’s part of m2. �

In practice, planning systems solving hybrid problems do
not just perform task decomposition, but also ordering inser-
tion and causal link insertion. Rather than defining these ex-
plicitly as operations on plans (as done in the literature) we
can simply define solutions as “supersets” of plans resulting
from decomposition thus further shortening and simplifying
the formalization by Bercher et al. [2016].

Definition 4 (Solution). A plan P = (PS,CL,≺, α)
is a solution to a hybrid planning problem π =
(F,Nc, Np, δ,M, P I ) with P I = (PSI , CLI ,≺I , αI ) iff:

1. P I →∗D P ′ = (PS′, CL′,≺′, α′) and PS = PS′,
CL ⊇ CL′, ≺ ⊇ ≺′, and α′ = α.

2. P is primitive and executable, the latter meaning:
• each precondition is protected by a causal link, and
• there are no causal threats.

Criterion 1 comes from HTN planning, which requires that
every solution is a refinement of the initial task network via
applying the model’s methods. There, such a task network
is regarded a solution if it possesses an executable lineariza-
tion. Since in hybrid planning causal links are the means to
establish executability we need to ensure that missing causal
links may be inserted as well as ordering constraints to re-
solve causal threats – both is ensured by allowing CL ⊇ CL′
and ≺ ⊇ ≺′. Criterion 2 then demands the standard POCL
solution criteria thus ensuring that every linearization is exe-
cutable and making all goals true [Bercher, 2021].

2.2 Known Subclasses
HTN planning is known to be undecidable in general [Erol et
al., 1996; Geier and Bercher, 2011]. Both Erol et al. [1996]
as well as Alford et al. [2012; 2015a] have identified various
special cases that make the problem computationally easier.
For the complexity investigations we conduct in the next sec-
tion we investigate all subclasses known to make HTN plan-
ning easier. These restrict partial order or the task hierarchy,
i.e., the interaction between compound tasks. We now review
and replicate these definitions from the literature.

We start with totally ordered problems, which are known
to be in EXPTIME [Erol et al., 1996] as well as EXPTIME-
hard [Alford et al., 2015a]. This restriction can be posed in
addition to other restrictions.

Definition 5 (Totally Ordered Problems). A hybrid planning
problem is called totally ordered if the initial plan as well as
all plans in all decomposition methods are totally ordered.

Acyclic problems (also called non-recursive) are known to
be decidable as well, since the search space is finite [Erol
et al., 1996]. They were later proved to be NEXPTIME-
complete [Alford et al., 2015a]. Acyclicity is also orthogonal
to other properties and can thus also be be studied on top of
other restrictions.

Definition 6 (Acyclic Problems). A hybrid planning problem
is called acyclic (or non-recursive) if there is only a finite
number of possible decompositions.

The class of regular problems was also identified by Erol
et al. [1996]. It is especially interesting as every classical
planning problem can be described as a regular HTN problem
(and vice versa). These problems are thus PSPACE-complete
[Erol et al., 1996].

Definition 7 (Regular Problems). A hybrid planning problem
is called regular if the initial plan as well as all plans in all
decomposition methods are regular. A plan is called regular
if it has at most one compound task and if it does, it must be
a “last task”, i.e., all other tasks are ordered before it.

Alford et al. [2012] found a generalization of regular prob-
lems, called tail-recursive. In tail-recursive problems, meth-
ods may contain more than one compound task, but arbitrary
recursion is only allowed through the very last task, all others
need to become “easier” upon decomposition. These prob-
lems are EXPSPACE-complete [Alford et al., 2015a]. For-
mally, they are defined as follows:

Definition 8 (Tail-recursive Problems). First, we define a
stratification on a set S is a total order≤ on S. An inclusion-
maximal subset S′ ⊆ S is a stratum if for all x, y ∈ S′ both
x ≤ y and y ≤ x holds. We can now define a hybrid plan-
ning problem as tail-recursive if we can define a stratification
≤ on its tasks Np ∪ Nc, where for all methods (c,CL7→, P )
with P = (PS,CL,≺, α) holds:

• if there exists a last compound plan step ps ∈ PS, we
have α(ps) ≤ c, and

• for any non-last compound plan step ps′ ∈ PS, we have
α(ps′) < c (i.e., α(ps′) ≤ c and c 6≤ α(ps)).

Tail-recursive problems are at the moment the computa-
tionally hardest subclass that is known to be decidable. As
will be seen later, the way how compound tasks decrease in
hardness (the level of their stratum), plans are bounded in
size when these problems are solved with a progression-based
search algorithm [Alford et al., 2012].

Example Revisiting the domain and initial plan depicted in
Fig. 1, we can make multiple observations. It’s not totally
ordered because neither are the initial plan nor method m4.
The problem isn’t acyclic because both C1 and C2 decom-
pose into themselves. The problem isn’t regular because of
the initial plan, but also because of m2 which has more than
one compound task. The problem is however tail-recursive,
which we verify now. We need to be able to find a stratifica-
tion that satisfies the requirement of the interaction between
compound tasks and the methods’ ordering constraints. We
see that C1 decomposes into C2 but not vice versa which puts
C1 on a strictly higher stratum than C2. The strata of primi-
tive tasks essentially don’t matter because one could just put
all primitive tasks into their own and lowest stratum. Here
however we distributed them differently (purely for illustra-
tive and didactic purposes). The stratification we found is
depicted in Fig. 2. We can verify that is satisfies all criteria
from Def. 8 thus making the planning problem tail-recursive
as we’ll see now.
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Figure 2: Graphical illustration of a stratification based on the plan-
ning problem depicted in Fig. 1.

Methods m1 and m3 could in principle be ignored since
they only contain primitive tasks. But since we put them not
into the lowest stratum we have to check them as well. m1

decomposes C1, which is on layer 3. Since its sole task P6

is on layer 2, the constraints are satisfied. Likewise for m3,
which decomposes C2, which is on layer 2. Its tasks P3 and
P5 are on layer 1 hence also satisfying all constraints.

Methodm2 is more interesting. Its first task is C2. Because
it’s a non-last task it must be on a lower stratum than the task
decomposed (i.e., C1), which is the case. P2 is primitive so it
can be disregarded anyway, but according to the stratification
we chose its stratum also satisfies all constraints as it also
lies on a lower stratum than C1. Finally, C1 itself is also
contained in m2 that decomposes C1. This is however not a
problem because it’s the last task in that method and therefore
allowed to be on the same stratum as the task the method
decomposes, which is the case here.

Finally, m4 also doesn’t violate tail-recursion. P3 and P4

are primitive and hence not problematic, but we also see that
their stratum (layer 1) is below that of C2, which is 2. The
only compound task in that method is C2, but again because
it’s the last task it’s allowed to be on the same level as the task
it decomposes (i.e., also C2), so that again works. �

3 Complexity Investigations
We consider both the the plan existence problem (is there a
solution?) as well as plan verification (is the given plan a
solution?). We start with the former.

3.1 Plan Existence Problem Complexity
The only complexity investigations for hybrid problems we
are aware of are those by Bercher et al. [2016] who showed
undecidability as well as semi-decidability (Thms. 4 and 5).
Semi-decidability is clear since one can simply perform a
breadth-first search. Undecidability may appear a trivial
corollary as hybrid problems are a special case of HTN prob-
lems. However, Bercher et al. [2016] showed this in the
presence of various so-called legality criteria (Defs. 7 to 10)
which restrict the set of decomposition methods one is al-
lowed to specify. One of their main results is however that
any HTN problem can be turned into a hybrid problem that
satisfies all investigated legality criteria (Thm. 1). This also
shows that these criteria are not beneficial as none of them
seems to provide any useful properties – which is why we do
not consider them in this work.

The complexity for the general case was already shown in
the literature. We repeat it here for the sake of completeness.

Theorem 1 (Thms. 4 and 5 by Bercher et al. [2016]). Hybrid
planning plan existence is undecidable and semi-decidable.

Again, as every HTN problem is by definition also a hybrid
problem, we furthermore get the following corollary:

Corollary 1. Every hybrid problem of a certain subclass
(e.g., total order etc.) is as hard as HTN problems of the re-
spective class i.e., has the same lower bound.

Note that the previous corollary holds for all possible sub-
classes, including those not yet discovered. Membership
proofs will however have to be able to deal with causal links
and the state constraints they induce. We investigate the com-
plexities in the order we reviewed the respective restrictions.

We start our investigations with the complexity of regu-
lar problems and their extension to tail-recursive problems.
Deciding them relies on progression, a common technique
in HTN planning [Alford et al., 2012] usually deployed in
state-based HTN planners like SHOP [Nau et al., 2003] or
one of the PANDA planners [Höller et al., 2018]. Although
progression would usually not be applied in plan space-based
planning, we are still able to use it in this context, and in fact
doing so will provide us with matching upper bounds.

Progression identifies tasks in a task network that accord-
ing to the ordering constraints could be executed next. Such
steps are called unconstrained. Formally, a step ps ∈ PS is
unconstrained if ∀ps′ /∈ {psI , ps} : (ps′, ps) /∈ ≺, i.e., if
it doesn’t have any predecessors according to ordering con-
straints (except for the initial state step). If such an uncon-
strained task is compound it gets decomposed, if it’s primitive
it gets applied in the current state, updating it. This works in
hybrid planning as well, we just need to keep track whether
causal links cause unresolvable threats and to re-link causal
links to the initial state after action application. Formally,
progression in hybrid planning can be defined as follows.
Definition 9 (Progression). Let π = (F,Nc, Np, δ,M, P ) be
a problem with P = (PS,CL,≺, α) a plan and ps ∈ PS
an unconstrained plan step with α(ps) = t. If t ∈ Nc and
m is a method for t that decomposes P into P ′, then π′ =
(F,Nc, Np, δ,M, P ′) is a progression of π through ps.

Otherwise, if t is primitive (t ∈ Np), applicable in the
initial state and does not threaten any causal links between
the initial state and another task, then it can be progressed
into a new planning problem without t. Let the labels in
δ(init) and δ(t) be disjoint. π′ = (F,Nc, Np, δ

′,M, P ′)
with P ′ = (PS′, CL′,≺′, α′) is a progression of P through
ps if and only if:

• δ′(x) = δ(x) for all x 6= init

• δ′(init) = (∅, (δadd(init) \ δdel(t)) ∪ δadd(t), ∅)
• PS′ = (PS \ {ps})
• CL′ = (CL \ CL1) ∪ CL2, with
CL1 = {(〈i, ps′〉, f, 〈j, ps′′〉) ∈ CL | ps ∈ {ps′, ps′′}}
CL2 = {(〈k, psI〉, f, 〈j, ps′〉) | (〈i, ps〉, f, 〈j, ps′〉) ∈ CL}
choosing k so that (k, f) ∈ δ′add(init) iff (i, f) ∈ δadd(t)

• ≺′ = (≺ \ {(ps′, ps′′) ∈ ≺ | ps ∈ {ps′, ps′′}})
• α′ = α \ {(ps, t)}
A sequence of progressions from problem π to π′ is denoted
as π →∗P π′.

Progression may increase a plan’s size in case of decompo-
sition (if the used method isn’t empty) but decreases it when
progressing a primitive task. Thus a problem is regarded
solved if there’s a sequence of progressions that turns the
problem’s initial plan into an empty one. Formally, if there



is a π′′ with an empty plan, such that π →∗P π′′, then π is
solvable. We omit a formal proof for this, but it can eas-
ily be seen that the sequence of applied actions corresponds
to an executable task linearization of a solution according to
Def. 4, similar to HTN planning [Alford et al., 2012].

Example We now revisit Fig. 1 but assume that the initial
plan is just any current plan, i.e., the state depicted on the
left is now the current state rather than the problem’s initial
state. In that plan, there are two tasks without predecessors,
so both could potentially be chosen to produce a successor
plan. Assume that P1’s precondition is satisfied in the current
state. Despite that, it can’t be “progressed” because its delete
effect a would violate the causal link rooting in the current
state. So instead we can only choose to refine C1 producing
two successor plans, one for each available method. Say m1

is chosen. In the resulting plan (where the current state’s
outgoing causal link would be re-linked to P6) only P6 can
be progressed, after which finally P1 could be progressed as
well. Note that in this progression algorithm there’s no need
to insert causal links to achieve executability as it’s usually
done in POCL planning as we still rely on the standard
state-based criterion for checking executability. We only use
causal links that are present in decomposition methods (and
are that ‘forced’ into plans), but don’t add new ones. �

Theorem 2. Regular as well as totally-ordered tail-recursive
hybrid problems can be decided in PSPACE, partially or-
dered tail-recursive problems in EXPSPACE.

Proof. We use progression to solve these problems.
Each decomposition may only add a finite number of

causal links, but the total number of links per plan can be
bounded by the available preconditions and effects in said
plan. Given a plan’s set of plan steps PS and its largest set of
preconditions p and effects e, there are at most |PS| · |p| · |e|
non-redundant causal links, which is a polynomial.

For regular problems, each decomposed task must be the
last, therefore all reachable plans are bounded by the size of
the largest plan in the methods (plus potentially additional
causal links that get propagated to the next plan, but this
is still polynomially bounded as stated above). Running a
non-deterministic progression search thus takes NPSPACE,
which is PSPACE [Savitch, 1970].

Tail-recursive problems can also be decided using progres-
sion since the size of each plan under progression can be
bounded [Alford et al., 2015a]. This is because each task,
if compound, adds at most one task with the same ‘hardness’,
all others have to precede it in this case, and are strictly easier.
So there is only a finite number of decompositions that may
increase the size of any plan under progression. This max-
imal size of task networks/plans under progression is called
progression bound [Alford et al., 2015a], which we show to
not increase in the hybrid setting.

For partially-ordered tail-recursive problems, the largest
task network reachable under progression is exponential in
size [Alford et al., 2015a]. Combined with the bound on
causal links, this puts partially-ordered tail-recursive hybrid
planning in NEXPSPACE = EXPSPACE.

For totally-ordered tail-recursive problems, if s is the num-
ber of layers in a problem’s (i.e., plan’s) stratification and m
is the largest method, there can be at most s · |m| tasks in
any reachable problem [Alford et al., 2015a]. This, with the
polynomial number of causal links for a given plan, means
there is a polynomial bound on the size of any reachable prob-
lem/plan, making it NPSPACE = PSPACE as well.

Theorem 3. Totally ordered hybrid problems can be decided
in EXPTIME.

Proof. Our proof is an extension of the one for Thm. 4 by
Erol et al. [1996] for EXPTIME-membership of totally or-
dered HTN problems. We first recap their exact proof for
HTN planning before extending it for hybrid problems (with-
out increased complexity despite dealing with causal links).

Proof for HTN planning The proof is a dynamic program-
ming procedure that builds a huge table of exponential size
that checks for each combination of input state s, primitive
or compound task task n, and successor state s′ whether n
can be transformed from s into s′. For a primitive task that’s
just a simple state transition, for a compound task that implies
checking whether a primitive refinement with the respective
property exists. More precisely, the table is the complete set
2F × (Nc ∪Np)× 2F × {>,⊥, unknown}. Note that even a
complete table has size 2|F | · |Nc| · |Np| ·2|F | ·3, which can be
bounded by O(22|F |), which is an exponential. By relying on
dynamic programming it can be shown that runtime doesn’t
exceed the construction process of this table thus resulting in
an EXPTIME-membership proof.

We start by initializing the table with unknowns. Then we
fill all entries of primitive tasks by simply applying them and
checking the resulting state. In a next step, we identify all
compound tasks that admit a decomposition method that con-
tains primitive tasks only. Let p1, . . . , pn such a primitive task
sequence of such a method. By assumption, we know that
we have all table entries filled out for all these tasks and all
combinations of predecessor and successor states. We there-
fore can now investigate every combination of initial and in-
termediate states as well. We thus check for each sequence
s0, . . . , sn whether p1, . . . , pn can be applied to s0 leading
into sn. For the method’s compound task c and each pair of
states s0, sn we update the table’s unknown truth value ac-
cordingly to > if it’s executable and keep it unknown oth-
erwise as there might be other decomposition methods (pro-
cessed later) that work. Note that now we have (2|F |)(n+1) =
2|F |·(n+1) many states to check, which is still an exponential
(not a double-exponential). We continue with this procedure
in a bottom-up fashion by investigating all methods for which
all tasks (primitive or compound) are marked executable. No
method has to be processed twice, so eventually we terminate
and capture the initial task network. Technically, we have to
compile the initial task network into a new method for some
new compound task cI so that we can look up the truth value
for cI . After the table update process terminated, the result
is yes if and only if the entry for cI is >. This completes the
proof (by Erol et al. [1996]) for the HTN setting.



Extensions to hybrid planning In hybrid planning, we
also have to deal with the inheritance of causal links, the main
problem being that even the same method might induce dif-
ferent constraints depending on the context in which it was
used. Some task c with a precondition a might be contained
in a plan twice, once with a link pointing to its precondi-
tion and once without. This means that even though each
method has to specify to which subtask this condition a gets
inherited down, the constraint for the respective causal link
might not exist – because this depends on whether the task
c was in fact involved in a causal link or not. This means
that we cannot just check method feasibility for its compound
task alone, but need to consider in which causal links it is
involved in. To store whether links that span over a task
are respected we also maintain a set of conditions dur (dur-
ing) for each task. For this reason, we extend the table to:
2F × (Nc∪Np)× (2F )4×{>,⊥, unknown}. Thus we added
three entries before the truth value, each being a subset of the
state variables. In order, they represent the conditions pro-
tected by an incoming link, those protected by an outgoing
causal link, and those protected during the complete execu-
tion of the respective task (i.e., those protected by links span-
ning over the task). We will refer to those three sets as in,
out, and dur, respectively. Whereas the dur set is relevant for
all tasks (primitive or compound), the causal link conditions
in in and out are only relevant for compound tasks as they
serve the purpose of knowing whether a method’s mapping
will induce a constraint or not.1 For primitive tasks, these
entries serve no purpose as they don’t constrain themselves.
Note that the size of this table has increased to O(25|F |), but
this is still an exponential.

The procedure works as before, with only minimal
changes. For primitive tasks we need to check whether the
protected conditions (in their dur set) don’t change. If they
do, their truth value has to be set ⊥. For the bottom-up prop-
agation step assume again that Pm ≡ t1, . . . , tn is a totally or-
dered task network in a method m = (c,CL 7→, Pm) ∈M for
some compound task c, such that we obtained all truth values
in the table for the involved tasks. Recall that the entry for c
that we investigate now also contains a complete specification
of its ingoing protected preconditions in, outgoing protected
effects out, and the conditions dur protected by links that
span over c itself and thus all tasks in all its methods. We can
thus exploit in, out, and CL 7→ to find out to which subtasks
causal links will be inherited down. Thus, if some precon-
dition a of c is protected (i.e., given in the table entry) we
know due to CL 7→ to which task it is inherited down and thus
know that the condition should be in the dur set of all preced-
ing tasks. The same can be done for effects. We furthermore
have to check that all causal links in the plan itself are being
satisfied. This is done in exactly the same way by looking
up the entries for which the respective dur set contains the
respective value. Finally, each condition in the dur set of c

1Note that the table and thus proof is a slight simplification here
since it’s possible to specify some compound task’s precondition or
effect multiple times, which would require to not just store the pro-
tected conditions, but also their number. This however doesn’t influ-
ence complexity, so we omitted this for the sake of simplicity.

must be in the dur sets of all sub tasks. With this change,
we will again reach the initial plan eventually and look up
whether it is executable thus completing the proof.

Theorem 4. Acyclic hybrid problems are in NEXPTIME,
acyclic totally ordered hybrid problems are in PSPACE,
primitive problems are in NP, and primitive totally ordered
problems are in P.

Proof. We follow (parts of) the membership proof by Geier
and Bercher [2011] for HTN problems with task insertion
(TIHTN problems) [Geier and Bercher, 2011; Alford et al.,
2015b]. We can guess and verify: We guess a so-called de-
composition tree [Geier and Bercher, 2011], which is simply
a tree-representation of a sequence of decomposition methods
thus leading to a certain plan (by applying those methods).
Since the problem is acyclic, the tree’s size can be bounded
by an exponential in the problem size. We only need to ver-
ify that the tree is “compatible with the model”, i.e., that it
indeed represents an applicable sequence of methods. This
can be done in polynomial time in the size of the tree [Geier
and Bercher, 2011] (assuming we also guessed a mapping be-
tween the task labels in the tree and those in the methods,
otherwise we also had to solve graph isomorphism problems,
which might not be in P) and does not become harder in the
hybrid setting since link inheritance is a trivial test according
the the respective method’s map. For executability the re-
sulting plan might require additional ordering constraints and
causal links, but those can be guessed as well in the size of
the resulting plan (which is also exponentially long) and ver-
ified in polynomial time [Bercher, 2021] – giving us a NEX-
PTIME decision procedure in total.

Acyclic problems are by definition tail-recursive [Alford et
al., 2015a] because every decomposition makes all resulting
tasks “easier” (i.e., decreases their stratification level). There-
fore totally ordered acyclic problems are also totally ordered
tail-recursive, which we proved to be in PSPACE.

Primitive problems can be regarded a special case of
acyclic problems, as no decompositions are possible here at
all. This leaves us with the last step of guessing orderings,
causal links, and verifying – showing NP membership. If the
plan is totally ordered already, then clearly we only need to
check whether existing causal links cause threats (if so reject
since they can’t be resolved) and whether we can insert causal
links to make it executable. The latter is yes if and only if the
action sequence is executable [Bercher, 2021, Prop. 1]. Since
executability can clearly be checked in polynomial time, P
membership follows directly.

Corollary 2. The special cases of hybrid planning problems
listed below all have the same computational complexity as
their HTN variants. More precisely:

• Primitive: NP-complete [Erol et al., 1996]
& total order: P [no hardness shown]

• Total order: EXPTIME-complete [Alford et al., 2015a]
• Acyclic: NEXPTIME-complete [Alford et al., 2015a]

& total order: PSPACE-complete [Alford et al., 2015a]
• Regular: PSPACE-complete [Erol et al., 1996]
• Tail-rec.: EXPSPACE-complete [Alford et al., 2015a]

& total order: PSPACE-complete [Alford et al., 2015a]



The previous corollary concludes tight complexity results
for all known subclasses of hybrid planning problems. Shown
citations indicate sources for the respective hardness results
(applied to Cor. 1).

3.2 Plan Verification Complexity
Bercher et al. [2016] studied the hybrid plan verification
problem and proved its NP-completeness for the general case.

They also studied the special case where not only the
plan to verify is primitive, but also the planning problem it-
self. They stated this could be checked in polynomial time
[Bercher et al., 2016, Thm. 2], but their result is incorrect.
The authors’ proof just checks whether the plan to verify is
executable – and nothing else. However for a plan to be a
solution it must also be a refinement of the initial plan, which
they did not check. For primitive plans this means checking
whether ordering and link insertion can turn one plan into the
other (cf. Def.4). This is apparently already NP-hard.

Definition 10 (Plan Verification Problem). Let π be a hybrid
planning problem. The hybrid plan verification problem is to
decide whether a given plan P is a solution to π.

The intuition about why verifying whether P is a solution
to π is NP-hard even for primitive plans is that the set PS
of plan steps in P may be disjoint with that in P I (note that
they are just arbitrary labels). Hence, in order to determine
whether P is a solution, we need to find whether there exists
a bijective mapping between those two sets which preserve
the structure of P I . Moreover, since ordering constraint and
causal link insertions are allowed in hybrid planning, it even-
tually leads us to solving a sub-graph isomorphism problem.
Behnke et al. [2015] phrased this for HTN planning:

Definition 11 (Plan Compatibility Problem). Given two
plans P1 = (PS1, ∅,≺1, α1) and P2 = (PS2, ∅,≺2, α2)
with |≺1| ≤ |≺2|, the plan compatibility problem is to de-
cide whether P1 is compatible with P2, i.e., whether there
exists a bijective mapping β : PS1 → PS2 such that
for every ps ∈ PS1, α1(ps) = α2(β(ps)), and for every
ps, ps′ ∈ PS1, if (ps, ps′) ∈ ≺1, then (β(ps), β(ps′)) ∈ ≺2.

Behnke et al. [2015] proved that this problem is NP-
complete (Thm. 3). By investigating their reduction for hard-
ness one can see that they construct a plan where no action
has any preconditions and effects thus making already this
special case NP-hard. Notice that this problem is just a spe-
cial case of plan verification for non-hierarchical hybrid prob-
lems, which we exploit for hardness of the latter problem.

Theorem 5. The plan verification problem for primitive hy-
brid problems is NP-complete.

Proof. Let P = (PS,CL,≺, α) be a primitive plan and
π = (F, ∅, Np, δ, ∅, P I) a primitive hybrid planning problem
where P I = (PSI ,CLI ,≺I , αI).

For membership, we first guess a bijective mapping β from
PSI to PS and then, based upon the solution criteria of hy-
brid planning problems (Def. 4), verify whether the following
criteria are satisfied: 1) For each (〈i, ps〉, f, 〈j, ps′〉) ∈ CLI ,
(〈i, β(ps)〉, f, 〈j, β(ps′)〉) ∈ CL, 2) for each (ps, ps′) ∈ ≺I ,
(β(ps), β(ps′)) ∈ ≺, and 3) P is executable, that is, every

precondition of every plan step in P is protected by a causal
link, and there are no causal threats in P . Clearly, the first
two criteria can be verified in time O(|CL|) and O(|≺|), re-
spectively. For the last one, we can iterate through all plan
steps ps’s in P and check 1) whether each precondition of ps
is protected and 2) for every other plan steps in P , whether it
violates the causal links protecting ps’s precondition. Check-
ing these two points takes time O(|PS|2).

For hardness, we can reduce from the plan compatibil-
ity problem. Let P1 and P2 be the ones from Def. 11, i.e.,
both without causal links. We now construct a hybrid prim-
itive plan verification problem with π = (∅, ∅, Np, δ, ∅, P I),
where δ maps all tasks to no-ops (which implies that all pos-
sible plans are executable). We set P I = P1 and the plan
P to verify as P2. We know that no plan may possibly con-
tain causal links due to lacking preconditions. So P = P2 is
a solution to P I = P1 if and only if P1 is compatible with
P2. Hardness follows directly since the the proof of Thm. 3
by Behnke et al. [2015] only considers the tasks with which
plans steps are labelled, but doesn’t consider their precondi-
tions and effects.

4 Conclusion
For hybrid planning, which combines HTN with POCL plan-
ning, only hardness results were known for the plan existence
problem, upper bounds were missing. That is, it was not
known whether causal links that may be part of the initial plan
or any decomposition method – and the state constraints they
induce – increase the computational hardness. By provid-
ing missing (complexity-matching) membership proofs we
answered this question and thus provided tight complexity
bounds for all known subclasses of hierarchical planning. We
further investigated the plan verification problem and were
able to correct a wrong result from the literature showing that
verifying primitive solutions to non-hierarchical problems is
already NP-hard. Another contribution of the paper is a sim-
plified formalization of hybrid planning which also resolves
issues with an existing formalization.
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