Flexible FOND HTN Planning

Dillon Chen, Pascal Bercher

School of Computing The Australian National University

ICAPS 2022

HTN planning

- "planning or decision making with restrictions on actions"
- > a task network is a partially ordered collection/directed acyclic graph of tasks
- ▶ a HTN problem has the form $P = \langle F, N_p, N_c, \delta, M, s_l, tn_l \rangle$
 - F is a set of facts, of which a subset is a state
 - N_p is a set of primitive task names
 - N_c is a set of compound task names
 - δ maps primitive task names to actions
 - M maps compound task names to task networks
 - $\blacktriangleright \ s_I \subseteq F \text{ is an initial state}$
 - tn₁ is an initial task network
- a solution consists of a sequence of decomposition methods in M applied on tn₁ followed by a sequence of executable tasks on the decomposed network

FOND^{MP} HTN planning

- ▶ a FOND^{MP} HTN problem has the form $P = \langle F, N_p, N_c, \delta, M, s_I, tn_I \rangle$
- $\blacktriangleright~\delta$ now maps primitive task names to *nondeterministic* actions
- ► a solution consists of a policy of task selection on task network-state tuples $\sigma_{\alpha} = (tn_{\alpha}, s_{\alpha})$ which either
 - 1. executes a first primitive task $t\in \mathsf{tn}_lpha$ applicable to s_lpha , or
 - 2. decomposes a first compound task $t \in tn_{\alpha}$
- note: input networks for a policy are quotiented out by their (task network) isomorphism class
- contrast to previous work (FOND^{FM} HTN planning): a sequence of methods in *M* applied on tn₁ followed by a **policy** on the decomposed network
- can extend to stochastic case by adding probabilities to actions

Isn't graph isomorphism hard?

TN/DAG isomorphism is GI-complete [Behnke, Höller, and Biundo 2015]

- create a new node for each original node
- create a new node for each original edge
- create a new directed edge from a new node-node to new edge-node corresponding to whether the original node was an endpoint of the original edge
- > TN isomorphism practically also easy [Höller and Behnke 2021]
 - idea: hashing on layers of tasks in a task network
- almost all graphs easy to solve: nauty package [McKay and Piperno 2014]
 - idea: individualisation and (colour) refinement
- hard graphs are regular but almost never the case for TNs
 - colour refinement sufficient for almost all graphs [Babai, Erdös, and Selkow 1980]

Simple algorithms

Can compile a FOND^{MP} HTN problem into a simple nondet. search problem:

- each search node consists of a **task network-state tuple** $\sigma_{\alpha} = (tn_{\alpha}, s_{\alpha})$
- ► a search node can be viewed as an FOND^{MP} HTN subproblem
- transitions between search nodes correspond to choice of decomposition or primitive task transitions:

if a first task t in the sprimitive, define a nondet. transition

$$\mathsf{a} = (\sigma_{\alpha}, \{\sigma_i = (\mathsf{tn}_{\alpha} \setminus \{t\}, s_i) \mid s_i \in \tau(t, s_{\alpha})\})$$

else for each method applicable to t, define a det. transition

$$a = (\sigma_{\alpha}, \{\sigma_{\beta} = (\operatorname{tn}_{\beta}, s_{\alpha})\}), \quad \text{s.t.} \quad \operatorname{tn}_{\alpha} \to_{m}^{t} \operatorname{tn}_{\beta})$$

Then solve with backwards search [Cimatti et al. 2003] or AND-OR search.

- ▶ general HTN planning semidecidable, so clearly FOND^{MP} HTN at least as hard
- divide HTN planning problems into subclasses based on
 - 1. order of task networks: total or partial
 - 2. hierarchy classes of task networks:
 - primitive: no compound tasks
 - acyclic: no compound task can reach itself with decomposition
 - regular: at most one compound task in each network and is the last task
 - \blacktriangleright tail-recursive: \sim acyclic + regular

Complexity: membership proof ideas

- use simple algorithms described earlier
 - $1. \ \mbox{compile into a nondet.}$ state transition model
 - 2. solve with AND-OR or backwards search
- find upper complexity bounds

Complexity: hardness proof ideas

reduce from alternating Turing machines (ATMs)

- ASPACE $(f(n)) = \text{DTIME}(2^{O(f(n))}), \quad f(n) \ge \log(n)$
- ATIME $(g(n)) = \text{DSPACE}(g(n)), g(n) \ge \log(n)$
- use some tricks with some HTN classes (acyclic, regular, tail-recursive) in order to compactly encode ATMs for reduction
 - acyclic problems can compactly encode an exponential number of tasks
 - regular problems can model nondet. planning; or just reduce directly from polynomially bounded ATMs w.r.t. space
 - tail-recursive proof extends proof of deterministic version which uses a scheduling style reduction [Alford, Bercher, and Aha 2015]

Results

Table: Complexity results for FOND^{MP} HTN planning. The first column lists known special cases by restricting the hierarchy. Classes marked * are not complete where only membership is known. Weak = deterministic for almost all subclasses.

Hierarchy	Order	Det.	Weak	Strong	Strong cyclic
primitive	total	P	NP	P*	P*
	partial	NP	NP	PSPACE	PSPACE
acyclic	total	PSPACE	PSPACE	EXPTIME	EXPTIME
	partial	NEXPTIME	NEXPTIME	EXPSPACE	EXPSPACE
regular	total	PSPACE	PSPACE	EXPTIME	EXPTIME
	partial	PSPACE	PSPACE	EXPTIME	EXPTIME
tail-recursive	total	PSPACE	PSPACE	EXPTIME	EXPTIME
	partial	EXPSPACE	EXPSPACE	2-EXPTIME	2-EXPTIME*

Takeaway:

- ► FOND^{MP} HTN:
 - nondet. HTN planning with *decomposition* selection as part of the solution

almost all problem classes to be one class harder in the complexity heirarchy Possible future work:

- benchmarks for nondet. and stochastic HTNs
- less naive algorithms and implementations of solvers