
Flexible FOND HTN Planning

Dillon Chen, Pascal Bercher

School of Computing
The Australian National University

ICAPS 2022

1 / 10



HTN planning

▶ “planning or decision making with restrictions on actions”
▶ a task network is a partially ordered collection/directed acyclic graph of tasks
▶ a HTN problem has the form P = ⟨F , Np, Nc , δ, M, sI , tnI⟩

▶ F is a set of facts, of which a subset is a state
▶ Np is a set of primitive task names
▶ Nc is a set of compound task names
▶ δ maps primitive task names to actions
▶ M maps compound task names to task networks
▶ sI ⊆ F is an initial state
▶ tnI is an initial task network

▶ a solution consists of a sequence of decomposition methods in M applied on tnI
followed by a sequence of executable tasks on the decomposed network

2 / 10



FONDMP HTN planning

▶ a FONDMP HTN problem has the form P = ⟨F , Np, Nc , δ, M, sI , tnI⟩
▶ δ now maps primitive task names to nondeterministic actions
▶ a solution consists of a policy of task selection on task network-state tuples

σα = (tnα, sα) which either
1. executes a first primitive task t ∈ tnα applicable to sα, or
2. decomposes a first compound task t ∈ tnα

▶ note: input networks for a policy are quotiented out by their (task network)
isomorphism class

▶ contrast to previous work (FONDFM HTN planning): a sequence of methods in
M applied on tnI followed by a policy on the decomposed network

▶ can extend to stochastic case by adding probabilities to actions

3 / 10



Isn’t graph isomorphism hard?

▶ TN/DAG isomorphism is GI-complete [Behnke, Höller, and Biundo 2015]
▶ create a new node for each original node
▶ create a new node for each original edge
▶ create a new directed edge from a new node-node to new edge-node corresponding

to whether the original node was an endpoint of the original edge
▶ TN isomorphism practically also easy [Höller and Behnke 2021]

▶ idea: hashing on layers of tasks in a task network
▶ almost all graphs easy to solve: nauty package [McKay and Piperno 2014]

▶ idea: individualisation and (colour) refinement
▶ hard graphs are regular but almost never the case for TNs

▶ colour refinement sufficient for almost all graphs [Babai, Erdös, and Selkow 1980]

4 / 10



Simple algorithms

Can compile a FONDMP HTN problem into a simple nondet. search problem:
▶ each search node consists of a task network-state tuple σα = (tnα, sα)
▶ a search node can be viewed as an FONDMP HTN subproblem
▶ transitions between search nodes correspond to choice of decomposition or

primitive task transitions:
▶ if a first task t in tn is primitive, define a nondet. transition

a = (σα, {σi = (tnα \ {t} , si) | si ∈ τ(t, sα)})

▶ else for each method applicable to t, define a det. transition

a = (σα, {σβ = (tnβ , sα)}), s.t. tnα →t
m tnβ

Then solve with backwards search [Cimatti et al. 2003] or AND-OR search.

5 / 10



Complexity: HTN subclasses

▶ general HTN planning semidecidable, so clearly FONDMP HTN at least as hard
▶ divide HTN planning problems into subclasses based on

1. order of task networks: total or partial
2. hierarchy classes of task networks:

▶ primitive: no compound tasks
▶ acyclic: no compound task can reach itself with decomposition
▶ regular: at most one compound task in each network and is the last task
▶ tail-recursive: ∼ acyclic + regular

6 / 10



Complexity: membership proof ideas

▶ use simple algorithms described earlier
1. compile into a nondet. state transition model
2. solve with AND-OR or backwards search

▶ find upper complexity bounds

7 / 10



Complexity: hardness proof ideas

▶ reduce from alternating Turing machines (ATMs)
▶ ASPACE(f (n)) = DTIME(2O(f (n))), f (n) ≥ log(n)
▶ ATIME(g(n)) = DSPACE(g(n)), g(n) ≥ log(n)

▶ use some tricks with some HTN classes (acyclic, regular, tail-recursive) in order to
compactly encode ATMs for reduction
▶ acyclic problems can compactly encode an exponential number of tasks
▶ regular problems can model nondet. planning; or just reduce directly from

polynomially bounded ATMs w.r.t. space
▶ tail-recursive proof extends proof of deterministic version which uses a scheduling

style reduction [Alford, Bercher, and Aha 2015]

8 / 10



Results

Table: Complexity results for FONDMP HTN planning. The first column lists known special
cases by restricting the hierarchy. Classes marked ∗ are not complete where only membership is
known. Weak = deterministic for almost all subclasses.

Hierarchy Order Det. Weak Strong Strong cyclic

primitive total P NP P∗ P∗

partial NP NP PSPACE PSPACE

acyclic total PSPACE PSPACE EXPTIME EXPTIME
partial NEXPTIME NEXPTIME EXPSPACE EXPSPACE

regular total PSPACE PSPACE EXPTIME EXPTIME
partial PSPACE PSPACE EXPTIME EXPTIME

tail-recursive total PSPACE PSPACE EXPTIME EXPTIME
partial EXPSPACE EXPSPACE 2-EXPTIME 2-EXPTIME∗

9 / 10



Conclusion

Takeaway:
▶ FONDMP HTN:

▶ nondet. HTN planning with decomposition selection as part of the solution
▶ almost all problem classes to be one class harder in the complexity heirarchy

Possible future work:
▶ benchmarks for nondet. and stochastic HTNs
▶ less naive algorithms and implementations of solvers

10 / 10


