e s; € 27: The initial state

Solution: A solution to a TOHTN planning problem is an action
sequence into which is decomposed from the initial task by methods,
it is executable in the initial state, and the precondition of every used
method is satisfied.

Input: An input TOHTN planning problem is in 2-regularation form
(2RF) instead of Chomsky Normal Form (CNF) for the purpose of
keeping the size of the planning problem small. In 2RF, every method
contains at most two subtasks.

Line 8-9: Checking whether a method precondition is satisfied.

runtime in seconds

101 —|

10° —

. . . o . Runtimes |
On Total-Order HTN Plan Verification with Method Preconditions
. . . TO - valid —— Flanning
— An Extension of the CYK Parsing Algorithm o Parsing
Songtuan Lin' Gregor Behnke? Simona Ondrékovd® Roman Bartdk® Pascal Bercher! %
!School of Computing, The Australian National University, Canberra, Australia 2 10"
ILLC, University of Amsterdam, Amsterdam, The Netherlands £
3Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic = 107
!{songtuan.lin, pascal.bercher}@anu.edu.au, ’g.behnke@uva.ni, *{ondrckova, bartak}@ktiml.mff.cuni.cz
\. 0 13‘70 27‘40 41‘10 54‘80 68‘50 82‘20 95‘90 10961
i Introduction | i TOHTN Plan Verification Algorithm] verified plans
/ o CYK
Objective: Our objective is to develop a novel Total Order HTN Input: A plan 7 = (py---pn) 1O malid P
(TOHTN) plan verification approach by extending the CYK- A planning problem P in 2RF 10
parsing Algorithm which can deal with method preconditions. Output: True or false depending on whether 7 is a solu- £
. . . tion to P i
Motlv?tlops. 1) TO.HTN‘?I?,H velrlﬁcz‘mtuI);Ccan bgrfl;eclzi)lm many ap(i 1: b Let (so---5,) be the state sequence s.t. f
plications, e.g., in veri ying plans in on anning, an so= 51, and s;_1 —,, s for each i € {1---n} o
2) the current SOTA parsing-based TOHTN plan verification 9 fori —mn to 1
approach relies on a brute force search. 3. Aliyi) ={c| e — (p)} U {p;} | ‘ ‘ ‘ | ‘ ‘
\ ’ 4: fOI‘ j « ’L tO n 0 175 351 527 703 878 1054 1230 1406
| TOHTN Planning 5: for k«itoj—1 ot plas
m = (prec(m), c,tn), TO - valid - noMPrec —
A TOHTN planning problem P = ((F,A,C,, M), ¢y, s1): 6: for m e {m|tn=(c), d €Al k], 10° SR
. 5 € Alk +1,] E
tn e F: A set of propositions ¢ € J 8
’OI prop 7 > Checking the method precondition z 10t
e o o A: A set of primitive tasks 8: if prec(m) C s;4 £
o “ 9: Ali, 7] < Ali, j] U {c} | 100
1\ .
S \ o C: A set of compound tasks 10: > Finding the unit productions
/ | / * /
; : \\“ ll ¢ 0 A= 27 x 27 x 27 11: for m € {m ¢ 7m <C>’C < Nc’} 0 1413 28% 423 s 7065 478 9801 11304
L0 o
oo | e MC2PxCx(AUC)* A . ¢ € Al L verified plans
/ | N \ = hed : 12: if prec(m) C s;_; for each m in m OV
.. .o TO - invalid - noMPrec arsin,
P I SR S SNG4 set of methods 13: Afi, §] + Ali,) U {c} . Plannis
e ¢; € C: The initial task 14: if ¢; € A[l,n] return true
15: else return false

f
0 132

T I T
265 398 531

T
664

T
797

T
930

1063

verified plans

Line 11-13: Finding all unit productions leading to ¢ € Ali, j].

TOHTN Planning Problems and CFGs

The basis for using the CYK algorithm in TOHTN plan verification is Empirical Evaluation

the connection between TOHTN planning prblems and context-free
grammars (CFGs):

Instances

10961
1406
11264
1103

Benchmark SAT-based

Not support
Not support
1036 (9.20%)
684 (62.01%)

Parsing-based

9158 (83.55%)
1301 (92.53%)
7889 (70.04%)
915 (82.96%)

Planning-based

10881 (99.27%)
1364 (97.01%)
9679 (85.93%)
900 (81.6%)

CYK-based (Ours)

10832 (98.82%)
1406 (100.00%)
9946 (88.30%)
981 (88.94%)

to-val

to-inval
to-val-no-mprec
to-inval-no-mprec

e A primitive task is a terminal symbol

e A compound task is a non-terminal symbol

e A method without preconditions is a production rule

The benchmark sets are from the IPC 2020 on HTN Planning. We compared our approach with the parsing-based plan verification approach, the

planning-based approach, and the SAT-based approach. We ran the experiments on the benchmark sets which respectively consist of planning
problems with and without method preconditions.

Idea: We need to check whether the precondition of each method is
satisfied when constructing the CYK table.

