e s; € 27: The initial state

Solution: A solution to a TOHTN planning problem is an action
sequence into which is decomposed from the initial task by methods,
it is executable in the initial state, and the precondition of every used
method is satisfied.

Input: An input TOHTN planning problem is in 2-regularation form
(2RF) instead of Chomsky Normal Form (CNF) for the purpose of
keeping the size of the planning problem small. In 2RF, every method
contains at most two subtasks.

Line 8-9: Checking whether a method precondition is satisfied.
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Line 11-13: Finding all unit productions leading to ¢ € Ali, j].

TOHTN Planning Problems and CFGs

The basis for using the CYK algorithm in TOHTN plan verification is Empirical Evaluation

the connection between TOHTN planning prblems and context-free
grammars (CFGs):

Instances

10961
1406
11264
1103

Benchmark SAT-based

Not support
Not support
1036 (9.20%)
684 (62.01%)

Parsing-based

9158 (83.55%)
1301 (92.53%)
7889 (70.04%)
915 (82.96%)

Planning-based

10881 (99.27%)
1364 (97.01%)
9679 (85.93%)
900 (81.6%)

CYK-based (Ours)

10832 (98.82%)
1406 (100.00%)
9946 (88.30%)
981 (88.94%)

to-val

to-inval
to-val-no-mprec
to-inval-no-mprec

e A primitive task is a terminal symbol

e A compound task is a non-terminal symbol

e A method without preconditions is a production rule

The benchmark sets are from the IPC 2020 on HTN Planning. We compared our approach with the parsing-based plan verification approach, the

planning-based approach, and the SAT-based approach. We ran the experiments on the benchmark sets which respectively consist of planning
problems with and without method preconditions.

Idea: We need to check whether the precondition of each method is
satisfied when constructing the CYK table.



