
On the Expressive Power of Planning Formalisms in Conjunction with LTL

Songtuan Lin, Pascal Bercher
School of Computing, College of Engineering and Computer Science

The Australian National University
{songtuan.lin, pascal.bercher}@anu.edu.au

Abstract

Linear Temporal Logic (LTL) has been widely employed in
various planning formalisms, e.g., in the ST RIPS formal-
ism, in order to specify constraints over state trajectories in
a planning problem. In this paper, we investigate the ex-
pressive power of two planning formalisms in conjunction
with LTL that are most commonly seen in non-hierarchical
planning and hierarchical planning respectively, namely the
ST RIPS formalism and the Hierarchical Task Network
(HT N) formalism. We do so by interpreting the set of all so-
lutions to a planning problem as a formal language and com-
paring it with other formal ones, e.g., star-free languages. Our
results provide an in-depth insight into the theoretical prop-
erties of the investigated planning formalisms and henceforth
explore the common structure shared by solutions to planning
problems in certain planning formalisms.

Introduction
Linear Temporal Logic (LTL) (Pnueli 1977) is a powerful
tool for model checking, e.g., hardware and software verifi-
cation (Huth and Ryan 2000; Baier and Katoen 2008). Re-
cently, it has also started being employed in the field of au-
tomatic planning due to its ability of imposing constraints
over state trajectories in a planning problem. LTL is usu-
ally exploited to describe so called temporal extended goals
(Bacchus and Kabanza 1996; De Giacomo and Vardi 1999)
in a planning formalism which specify what properties must
hold while a plan is executing, e.g., see the work by Fox and
Long (2003) on how this feature is adapted in the Planning
Domain Definition Language (PDDL) (Ghallab et al. 1998).

In this paper, we are concerned with the expressive power
of the ST RIPS planning formalism (Fikes and Nilsson
1971) and of the Hierarchical Task Network (HT N) plan-
ning formalism (Erol, Hendler, and Nau 1996; Geier and
Bercher 2011; Bercher, Alford, and Höller 2019) in conjunc-
tion with LTL. The former one is a widely used formalism
for non-hierarchical planning and the latter for hierarchical
planning. Although there are works toward the expressive-
ness of the ST RIPS and HT N formalism (Höller et al.
2014, 2016) and of LTL (Thomas 1997; Diekert and Gastin
2008; De Giacomo and Vardi 2013), to our best knowledge,
no efforts have been devoted to study their combinations. We

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

CSL

CFL

LHT N ⊆ LHT N -L ⊆ LHT N -FL

Thm. 8

CFL = LT OHT N -L = LT OHT N -FL

Thm. 7

REG

SF = Lf-LTL SF = LT IHT N -FL

Thm. 6
LST RIPS-FL = SF

Cor. 2

LST RIPS-L ⊊ SF
Thm. 2

LST RIPS ⊊ SF
Cor. 1

LT IHT N -L ⊊ SF
Cor. 3

LT IHT N ⊊ SF
Thm. 5

LST RIPS ⊊ LST RIPS-L

Thm. 1
LT IHT N ⊊ LT IHT N -L

Cor. 3

Figure 1: The positions of the languages of the planning for-
malisms studied in this paper in the Chomsky hierarchy. The
notation LX with X being a planning formalism refers to
the formal languages described by the formalism X . CSL,
CFL, REG, and SF refer to context-sensitive, context-free,
regular, and star-free languages respectively. Lf-LTL refers to
the languages of finite-LTL. The languages of LTL are not
included here, because those are equivalent to star-free lan-
guages of infinite length, whereas the languages listed here
are all of finite length.

follow the idea by Höller et al. (2014, 2016) by which the set
of all solutions to a planning problem (in a certain formal-
ism) is interpreted as a formal language. Just as Höller et al.
(2014, 2016), we compare such a language to other formal
languages, to establish the tight upper bound for the expres-
siveness of the respective formalism. We visualize the com-
parison results in Fig. 1 by placing the formal languages de-
scribed by each planning formalism studied into the Chom-
sky hierarchy (Chomsky 1956).

Another approach for evaluating and comparing the ex-
pressive power of different planning formalisms is to check
whether there exists a polynomial reduction from an arbi-
trary planning problem P in one formalism into a planning
problem P ′ in another formalism. Such reductions only re-
quire that P has a solution iff P ′ has one. Solutions to P and
that to P ′ may thus have significantly different structures, or

some solutions might even be lost. In contrast, the evaluation
approach used here by Höller et al. (2014, 2016) requires
that a solution to a planning problem in one planning formal-
ism must also be a solution (resp. a word) to a planning prob-
lem in another formalism (resp. another formal grammar).
For more details about the comparison between these two
evaluation approaches, see the work by Höller et al. (2016).

The motivation for our work is twofold. Firstly, it is to
get an in-depth insight into the theoretical properties of the
planning formalisms under investigation of which the ex-
pressiveness, i.e., the class of formal languages that can be
described by a planning formalism, is the core aspect. More
concretely, regarding the solution set of a planning prob-
lem as a language establishes a bridge from planning theory
to formal language theory which itself has a connection to
complexity theory (e.g., see the work by Hopcroft, Motwani,
and Ullman (2007)) and logic (e.g., see the work by Thomas
(1997), by Camacho et al. (2019), and by Pinchinat, Rubin,
and Schwarzentruber (2022)). Additionally, expressiveness
results can be exploited by transferring known properties of
well-studied formal grammars to planning languages that are
more expressive than them, which can further improve our
understanding of those planning formalisms. Secondly, for
practical implications, knowledge of expressiveness of each
planning formalism helps choosing a suitable one to model
a given problem at hand to make sure the problem can even
be modeled in the first place. For instance, suppose that the
solution set of a problem to be modeled is equivalent to a
context-free language, then, by our result, we know that it
cannot be modeled as a classical planning problem while
preserving the same solution set.

Background
In this section, we present the concepts and notations that
will be referred to throughout the paper. We start by giv-
ing a short review for formal languages. Afterwards, we will
introduce the syntax and semantics of LTL as well as its
variant finite-LTL (f-LTL). Lastly, we will formalize various
planning formalisms including both hierarchical and non-
hierarchical ones which incorporate LTL/f-LTL.

Formal Languages
The basis for defining formal languages is the concept of
alphabets. An alphabet is a finite non-empty set whose el-
ements are called symbols. Given an alphabet Σ, the nota-
tion Σi with i ∈ N0 (N0 = N ∪ {0}) refers to the set of
sequences of length i which consist of symbols in Σ, i.e.,
Σi = {⟨a1 · · · ai⟩ | 1 ≤ j ≤ i, aj ∈ Σ}. The set Σ∗ is de-
fined as the union of Σi for all i ≥ 0, i.e., Σ∗ =

⋃
i≥0 Σ

i.
An element ω ∈ Σ∗ is called a word. Particularly, {ε} = Σ0

where ε refers to the empty word.
A formal language over an alphabet Σ is a subset (finite

or infinite) of Σ∗. One crucial class of languages which we
will mostly deal with in this paper is star-free languages. A
language over an alphabet Σ is star-free if it can be con-
structed in terms of the languages ∅ (the empty language),
{ε} (the language of the empty word), and all languages {a}
with a ∈ Σ (the languages consisting of one word being a

singleton symbol in Σ) by using concatenation and binary
operations, i.e., union, intersection, and complement (with
respect to Σ∗) finitely many times (Thomas 1997).

Beyond star-free languages, there are regular languages,
context-free languages, context-sensitive languages, and re-
cursively enumerable languages, each of which is a strict
superset of previous ones. Those languages except star-free
ones form the Chomsky hierarchy (Chomsky 1956), which
has evolved as the standard measurement of the expressive-
ness of a language. For instance, by recognizing that star-
free languages are a strict subset of regular languages (Ma-
teescu and Salomaa 1997), we know that star-free languages
have less expressive power than regular ones.

Note that apart from the formal languages described here
which consist of words of finite length, there are languages
where each word is of infinite length. Such languages are
called ω-languages. Those are two disjoint classes of lan-
guages. In this paper, our primary concern is formal lan-
guages of finite words, because we will interpret the set of
all solutions to a planning problem in a planning formalism
as such a language, as mentioned in the introduction. How-
ever, we will also encounter ω-languages when we confront
the language described by an LTL formula. Hence, we em-
phasize their difference here for clarity.

Linear Temporal Logic
Next we present the syntax and semantics of Linear Tempo-
ral Logic. We give the syntax of LTL in BNF, which is an
adaption of the one given by Pnueli (1977) and is defined
over a set of propositions P .

φ = ⊤ | p | ¬φ | φ1 ∧ φ2 | ⃝ φ | φ1 U φ2

where ⊤ stands for true, p ∈ P is a proposition, φ1 and φ2

are LTL formulae, # stands for next meaning informally that
φ should be satisfied in the next state, and U stands for until
meaning informally that φ1 holds until φ2 is satisfied.

The semantics of LTL is defined in terms of an infinite
state trace π = ⟨s1s2 · · · ⟩ where si ⊆ P is called a state for
each i ≥ 1. We follow the convention to use πi, i ≥ 1, to
refer to the subsequence ⟨sisi+1 · · · ⟩ of states. For i ≥ 1,
• πi ⊨ ⊤,
• πi ⊨ ¬φ iff πi ⊭ φ,

• πi ⊨ p iff p ∈ si,
• πi ⊨ #φ iff πi+1 ⊨ φ,

• πi ⊨ φ1 ∧ φ2 iff πi ⊨ φ1 ∧ πi ⊨ φ2, and
• πi ⊨ φ1 U φ2 iff there exists a j ≥ i such that πj ⊨ φ2

and πk ⊨ φ1 for all i ≤ k < j.
Note that the set {⊤,¬,#, U} of connectives is adequate for
LTL (Huth and Ryan 2000) because others, i.e., ⊥ (false), ∨
(logical or), ⋄ (eventually), and @ (always), can be formu-
lated in terms of those:
• ⊥ ≡ ¬⊤,
• ⋄φ ≡ ⊤ U φ

• φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)
• @φ ≡ ¬(⋄(¬φ)).

Intuitively, ⊥ stands for false, ∨ is the logical or operator,
⋄φ means that φ will eventually be satisfied, and 2φ means
that φ is always satisfied.

The language L(φ) of an LTL formula φ over a proposi-
tion set P is defined over the alphabet ΣP = 2P and con-
sists of all infinite state sequences π such that π ⊨ φ, i.e.,
L(φ) = {π | π ⊨ φ} (Baier and Katoen 2008). Regarding a
set ΣP of states as an alphabet here might seem unusual, yet

this is well defined because any non-empty finite set can be
seen as an alphabet. Clearly, L(φ) is an ω-language.

A variant of LTL called finite-LTL (f-LTL) which is tai-
lored to finite state sequences are also introduced, e.g., see
the works by Bienvenu, Fritz, and McIlraith (2006), by Baier
and McIlraith (2006a, 2006b), and by De Giacomo and
Vardi (2013). The syntax of f-LTL is identical to that of
LTL. The semantics are defined over a finite state sequence
π = ⟨s1 · · · sn⟩ (n ∈ N): For 1 ≤ i ≤ n,
• πi ⊨ ⊤, • πi ⊨ p iff p ∈ si,
• πi ⊨ ¬φ iff πi ⊭ φ,
• πi ⊨ φ1 ∧ φ2 iff πi ⊨ φ1 ∧ πi ⊨ φ2,
• πi ⊨ #φ iff i < n and πi+1 ⊨ φ, and
• πi ⊨ φ1 Uφ2 iff there exists a j with i ≤ j ≤ n such that
πj ⊨ φ2, and for each i ≤ k < j, πk ⊨ φ1.

The crucial difference between the semantics of f-LTL
and that of LTL is that, apart from being given over a finite
state trace and an infinite one, the operator # in f-LTL im-
poses an additional constraint that i must be strictly smaller
than the length of the state trace. Such a constraint gives f-
LTL the power to express that the state sequence has reached
its end. The expression for this, written ⊙ = ¬(#⊤), is sat-
isfied iff i = n (De Giacomo and Vardi 2013).

The formal language L(φ) of an f-LTL formula φ over a
proposition set P is again defined over the alphabet ΣP =
2P and L(φ) = {π | π ⊨ φ} (De Giacomo and Vardi 2013).
In contrast to LTL, L(φ) consists of words of finite length.

Non-hierarchical Planning Formalisms
We move on now to introduce the planning formalisms that
will be studied in this paper. In this section, we focus on
non-hierarchical planning formalisms. We begin by giving
the definition of the ST RIPS formalism.

Definition 1. A ST RIPS planning problem P is a tuple
(F ,A, δ, sI , g) where F is a set of propositions, A is a set of
action names, δ : A 7→ 2F ×2F ×2F is a function mapping
action names to their preconditions and effects, sI ∈ 2F is
the initial state, and g ⊆ F is the goal description.

The purpose of introducing the function δ and empha-
sizing exclusively action names is to make the comparison
with formal languages more straightforward for which we
will have more discussion later. We use the term action and
action name interchangeably throughout this paper to ease
the notation. The function δ maps each action a ∈ A to
its preconditions, add list and delete list, written δ(a) =
(prec(a), add(a), del(a)). The preconditions of an action
determine whether it can be applied in some state. Formally,
an action a is said to be applicable in a state s ∈ 2F if
prec(a) ⊆ s. The add list together with the delete list of an
action is called the effects of this action, which specify how
it changes a state once it is executed. A state s′ is the conse-
quence of applying an action a in a state s, written s →a s′,
if a is applicable in s, and s′ = (s\del(a)) ∪ add(a). A
state sequence π = ⟨s0 · · · sn⟩ is the consequence of ap-
plying a sequence of actions a = ⟨a1 · · · an⟩ in a state s if
s0 = s, and for each 1 ≤ i ≤ n, prec(ai) ⊆ si−1 and
si = (si−1\del(ai)) ∪ add(ai). We also write s →∗

a sn as
an abbreviation of this process.

A solution to a planning problem P = (F ,A, δ, sI , g) is
an action sequence a such that sI →∗

a s′ for some s′ with
s′ ∈ 2F and g ⊆ s′.

One way to incorporate LTL into the ST RIPS formal-
ism is to replace the goal description in a ST RIPS plan-
ning problem with an LTL formula. Such goals are called
temporally extended goals (TEGs) (Bacchus and Kabanza
1996; De Giacomo and Vardi 1999). We denote this ex-
tended planning formalism as ST RIPS-L.

Definition 2. A ST RIPS-L planning problem P is a tu-
ple (F ,A, δ, sI , g) where F , A, δ, and sI are defined in the
same way as that in a ST RIPS planning problem, and g is
an LTL formula.

An action sequence a is a solution to a ST RIPS-L plan-
ning problem P if the state sequence which is the conse-
quence of applying a in the initial state of P satisfies the
TEG, i.e., the LTL formula g. The problem that arises here
is that the semantics of LTL are defined over infinite state
sequences whereas a state sequence resulting from an action
sequence is finite in standard planning processes. A common
way to address this problem is to extend a state sequence in
ST RIPS-L planning to an infinite one by repeating its last
state indefinitely (Bacchus and Kabanza 1996; Edelkamp
2006). For instance, the state sequence ⟨s1 · · · sn⟩ is ex-
tended to ⟨s1 · · · snsn · · · ⟩.

A more sophisticated way to make the ST RIPS formal-
ism be able to employ TEGs without artificially extending
state sequences is writing TEGs in f-LTL. We refer to this
formalism as ST RIPS-FL.

Definition 3. A ST RIPS-FL planning problem P is a
tuple (F ,A, δ, sI , g) where F , A, δ, and sI are defined in
the same way as those in a ST RIPS planning problem,
and g is an f-LTL formula. Similarly, a solution to P is an
action sequence which leads to a state sequence satisfying g.

Hierarchical Planning Formalisms
In this section, we introduce the hierarchical planning for-
malisms that will be studied in this paper. Hierarchical plan-
ning formalisms extend non-hierarchical ones in the way
that a plan (i.e., an action sequence) is obtained from iter-
atively refining abstract tasks (also called compound tasks).
We present here one standard hierarchical planning formal-
ism called the Hierarchical Task Network (HT N) formal-
ism, which adapts the work by Geier and Bercher (2011)
and by Bercher, Alford, and Höller (2019).

Definition 4. A task network tn is a tuple (T,≺, α) where
T is a set of symbols called task identifiers, ≺ ⊆ T × T is a
set of ordering constraints (i.e., partial order relations), and
α is a function mapping each task identifier to its task name.

Two task networks tn = (T,≺, α) and tn′ = (T ′,≺′, α′)
are called isomorphic, written tn ∼= tn′, if there exists a
bijective mapping ϱ : T 7→ T ′ such that for all t1, t2 ∈ T ,
(t1, t2) ∈ ≺ iff (ϱ(t1), ϱ(t2)) ∈ ≺′, and α(t1) = α′(ϱ(t1)).

A linearization of a task network tn = (T,≺, α) is a total
order of T which respects ≺. Note that a linearization tn of
tn is a sequence of task identifiers. We write α(tn) to refer to

the sequence of task names represented by tn. For instance,
if tn = ⟨t1 · · · tn⟩, then α(tn) = ⟨α(t1) · · ·α(tn)⟩.

In HT N planning, task names are categorized as being
compound task names and primitive task names. A prim-
itive task name is identical to an action name defined in
non-hierarchical planning formalisms, and hence we use the
terms primitive task and action interchangeably. A com-
pound task name c is refined into a task network tn by a
method m = (c, tn). Formally, the concept of task networks
is employed in the HT N formalism as follows.

Definition 5. An HT N planning problem is a tuple
(D, cI , sI , g). D = (F ,A, C,M, δ) is called the domain of
the planning problem where F is a set of propositions, A is
a set of action names, C is a set of compound task names,
M is a set of methods, and δ is a function mapping each
action name to its preconditions and effects, as defined in
non-hierarchical formalisms. cI ∈ C is the initial task name.
sI ∈ 2F is the initial state. g ⊆ F is the goal description.

A task network tn = (T,≺, α) is refined into another
one tn′ = (T ′,≺′, α′) by a method m = (c, tnm), writ-
ten tn →m tn′, if there exists a task identifier t ∈ T
with α(t) = c, and there exists a task network tn′

m =
(Tm,≺m, αm) with tn′

m
∼= tnm such that

• T ′ = (T\{t}) ∪ Tm,
• ≺′ = (≺ ∪ ≺m ∪ ≺X) ∩ (T ′ × T ′) in which ≺X =
{(t1, t2) | (t1, t) ∈ ≺, t2 ∈ Tm} ∪ {(t2, t1) | (t, t1) ∈
≺, t2 ∈ Tm}, and

• α′ = (α\{(t, c)}) ∪ αm.
A task network tn is refined into another one tn′ by a se-
quence of methods m = ⟨m1 · · ·mn⟩ (n ∈ N0), written
tn →∗

m tn′ if there exists a sequence of task networks
⟨tn0 · · · tnn⟩ such that tn0 = tn, tnn = tn′, and for each
1 ≤ i ≤ n, tni−1 →mi

tni.
Given an HT N planning problem P = (D, cI , sI , g)

with D = (F ,A, C,M, δ), a task network tn = (T,≺, α)
is a solution to P if for all t ∈ T , α(t) ∈ A, tn can be re-
fined from cI (by some method sequence), and tn possesses
a linearisation tn such that sI →∗

a s where a = α(tn) for
some s ∈ 2F with g ⊆ s.

A variant of the HT N formalism which is widely used
is called the Task Insertions Hierarchical Task Network for-
malism, denoted as T IHT N (Geier and Bercher 2011; Al-
ford, Bercher, and Aha 2015). The only difference between
the T IHT N formalism and the HT N formalism is that a
solution task network tn to a T IHT N planning problem P
does not have to be a refinement of the initial task cI of P ,
instead tn should be obtained from another task network tn′,
which is decomposed from cI , by inserting arbitrary actions
and ordering constraints to tn′.

To let the introduced hierarchical planning formalisms be
able to express TEGs, we imitate how LTL and finite-LTL
are incorporated into non-hierarchical planning formalisms.
We use (T I)HT N -L, and (T I)HT N -FL to refer to the
formalisms in which the goal of a planning problem is de-
scribed by an LTL and f-LTL formula respectively.

Formal Languages of Planning Formalisms

Having introduced all planning formalisms needed, we now
define the formal languages of those formalisms. We follow
the definition by Höller et al. (2014, 2016) by which the for-
mal language of a planning problem in a non-hierarchical
planning formalism is the set of all solutions to the problem.

Definition 6. The formal language L(P) of a planning
problem P in a non-hierarchical planning formalism, i.e.,
ST RIPS , ST RIPS-L, or ST RIPS-FL, is the set of
all solutions to P , i.e., L(P) = {ω | ω is a solution to P}.

For hierarchical planning formalisms, Höller et al. (2014,
2016) defined that the language of a planning problem P in
a hierarchical planning formalism is the set of all lineariza-
tions of all solutions to P .

Definition 7. The formal language L(P) of a planning
problem P in a hierarchical planning formalism, i.e.,
(T I)HT N , (T I)HT N -L, or (T I)HT N -FL, is defined
as follows: L(P) = {ω | ω = α(tn), tn ∈ L(tn), tn ∈
S(P)}, where S(P) is the set of all solution task networks
to P , and L(tn) is the set of all linearizations of tn that is
executable in the initial state.

The languages of a planning formalism is the set of all
languages that can be described by planning problems in
that formalism. Concretely, let X be one of ST RIPS ,
ST RIPS-L, ST RIPS-FL, (T I)HT N , (T I)HT N -L,
and (T I)HT N -FL, and P(X) be the set of all planning
problems in the respective formalism, the languages LX of
the formalism X is defined as follows:

LX = {L(P) | P ∈ P(X)}

Note that the languages of any introduced planning formal-
ism are of words of finite length, including those formalisms
equipped with LTL formulae as TEGs. There, although we
artificially extend a state sequence to infinite, the action se-
quence resulting in this state sequence remains finite.

We use the notation ω instead of a in the above defini-
tion to refer to an action sequence that is a solution to a
planning problem P in order to emphasize that ω is now
referred to a word in the language of P (ω is a standard nota-
tion used to denote a word in formal languages, see e.g., the
work by Hopcroft, Motwani, and Ullman (2007)). Given a
planning problem P in any introduced (hierarchical or non-
hierarchical) planning formalism whose action set is A, the
presence of the function δ allows us to directly compare
L(P) with some formal language defined over the alpha-
bet Σ with Σ = A. Such a treatment makes the comparison
between the languages of a planning formalism and other
formal languages more straightforward, and hence we can
assess the expressiveness of a planning formalism by finding
the position of the languages of this formalism in the Chom-
sky hierarchy, as proposed by Höller et al. (2014, 2016).

For the purpose of simplicity, we restrict that all planning
problems in all formalisms which occur later in this paper
are defined over the same action set A, and all formal lan-
guages are defined over the alphabet Σ with Σ = A.

Expressiveness of Planning Formalisms
We move on to study the expressiveness of the planning for-
malisms introduced, starting by non-hierarchical ones.

Expressiveness of Non-hierarchical Formalisms
We first present some existing results for the expressiveness
of the ST RIPS formalism. Höller et al. (2016) have shown
that the languages of the ST RIPS formalism are a strict
subset of regular languages REG. They explored this result
by exploiting the proposition which we write down as fol-
lows because we will require it later on.

Proposition 1 (Höller et al. (2016, Prop. 1)). Let s and s′ be
two states and a be an action, if s →∗

a s′ for a = ⟨a a⟩, then
for any a′ = ⟨a . . . a⟩ with |a′| > 0 where |a′| is the length
of a′, s →∗

a′ s′.

However, Höller et al. (2016) did not give a tight bound
for the expressiveness of the ST RIPS formalism. Here,
we tighten their result by showing that the languages of the
ST RIPS formalism is a strict subset of star-free languages
SF . Our justification is based on an important property of
star-free languages, that is, every star-free language is non-
counting and every regular language that is non-counting is
also star-free Mateescu and Salomaa (1997).

Definition 8. A language L over the alphabet Σ is non-
counting if there exists an n0 ∈ N such that for every n ≥ n0

and for any u, v, w ∈ Σ∗, uvnw ∈ L iff uvn+1w ∈ L.

The notation vn refers to the word consisting of n consec-
utive v. We show that, by using this property, every language
described by a ST RIPS planning problem is star-free.

Lemma 1. Given a ST RIPS planning problem P , the
language described by P is non-counting.

Proof. We take n0 = 2 as the threshold. We need to show
that for every n ≥ n0, uvnw is a solution to P iff uvn+1w
is a solution as well.

(=⇒): Assume that, without loss of generality, v =
⟨a1 · · · ai⟩ for some i ≥ 1, vn is executed in the state s, i.e.,
sI →∗

u s, and s →∗
v s′. The process s →∗

v s′ can be captured
by the formula s′ = (s\D)∪A with D ⊆

⋃i
j=1 del(aj) and

A ⊆
⋃i

j=1 add(aj). Observe that s′ = (s′\D)∪A, because
for every d ∈ D, if d /∈ A, then d has already been removed
from s, and hence d /∈ s′, otherwise, d will first be removed
from s′ and be added back latter on by A. It is thus trivial to
prove the argument by induction on n.
(⇐=): Assume that s →∗

vn sn and that s →∗
vn+1 sn+1.

By definition, n + 1 ≥ 3, and thus sn = sn+1 accord-
ing to our previous argument. It follows immediately that if
uvn+1w is a solution to P , then uvnw is also a solution.

One can see that the presented lemma generalizes Prop.1
by Höller et al. (2016), and it follows from this lemma that
every language described by a ST RIPS planning problem
is both regular and non-counting, and it is thus star-free. Fur-
ther, by Prop. 1 (Höller et al. 2016), we can construct the
language {⟨aa⟩}, which by definition is star-free and cannot
be expressed by any ST RIPS planning problem (Höller

et al. 2016, Thm. 2). Hence, the languages of the ST RIPS
formalism form a strict subset of star-free languages.

Corollary 1. LST RIPS ⊊ SF .

Now that we can place the languages of the ST RIPS
formalism to the precise location in the Chomsky hierarchy,
i.e., below star-free languages, we then move on to con-
sider the expressive power of the ST RIPS-L formalism.
The next theorem shows that the ST RIPS-L formalism is
strictly more expressive than the ST RIPS formalism by
exploiting the feature that TEGs written as LTL formulae
provide the ability of imposing state constraints over state
trajectories produced by action sequences.

Theorem 1. LST RIPS ⊊ LST RIPS-L.

Proof. We first observe that the goal description g in an arbi-
trary ST RIPS planning problem can be written as a TEG
in LTL: ⋄(@(

∧
p∈g p)). Therefore, any language that can be

described by a ST RIPS planning problem can also be de-
scribed by a ST RIPS-L planning problem.

To prove the strict inclusion relationship, we consider a
ST RIPS-L planning problem P = (F ,A, sI , g) where
F = {pa | a ∈ A}, for each a ∈ A, prec(a) = ∅,
add(a) = {pa}, and del(a) = {pa′ | a′ ̸= a, a′ ∈ A}, and
g = #(#(#pâ)) for some â ∈ A. This planning problem
describes the language Σ2âΣ∗ which we denote as L. We
prove by contradiction that there exist no ST RIPS plan-
ning problems which can express L. Suppose that there ex-
ists a ST RIPS planning problem which can express this
language. Thus, the action sequence ⟨b b â ai1 · · · aik⟩ with
b ∈ A and aij ∈ A for each 1 ≤ j ≤ k must be a solution to
this planning problem. However, by Prop. 1 (Höller et al.
2016), the action sequence ⟨b b · · · b â ai1 · · · aik⟩ should
then be a solution as well, which results in a contradic-
tion. Therefore, there exists at least one ST RIPS-L plan-
ning problem which expresses a language that cannot be ex-
pressed by any ST RIPS planning problem.

We move on to consider the relative position of the lan-
guages of the ST RIPS-L formalism in the Chomsky hier-
archy with respect to star-free languages. We will show that
the ST RIPS-L formalism is strictly less expressive than
star-free languages, i.e., LST RIPS-L ⊊ SF . For this, we
first prove that every language described by a ST RIPS-L
planning problem is star-free.

Given an arbitrary ST RIPS-L planning problem P =
(F ,A, δ, sI , g), we construct P ′ = (F ′,A, δ′, sI , g) such
that F ′ = F∪PA with PA = {pa | a ∈ A} and F∩PA = ∅,
and for each a ∈ A with δ(a) = (prec(a), add(a), del(a)),
δ′(a) = (prec(a), add(a) ∪ {pa}, del(a) ∪ (PA\{pa}). By
construction, L(P) = L(P ′). It is thus sufficient to prove
that L(P ′) is star-free.

To this end, we consider a language Ls(P ′) defined over
the alphabet ΣS ⊆ 2F

′
containing all states s ∈ 2F

′
such

that |s ∩ PA| = 1. Note that the constructed alphabet ΣS

is a set of states, which is a wildly used construction when
considering the language of an LTL formula, e.g., as seen in
the works by Baier and Katoen (2008) and De Giacomo and
Vardi (2013). The language Ls(P ′) is defined as follows.

Definition 9. Ls(P ′) is the set of all words ω = ⟨s1 · · · sn⟩,
n ∈ N, such that ω is a state sequence in P ′ which is the con-
sequence of applying an action sequence in sI and its infinite
extension ω′ = ⟨s1 · · · snsn · · · ⟩ satisfies g, i.e., ω′ ⊨ g.

We first show if Ls(P ′) is star-free, then so is L(P ′).
Lemma 2. If Ls(P ′) is star-free, then L(P ′) is star-free.

Proof. Note that by taking n ∈ N, Ls(P ′) excludes the
word ω = ⟨sI⟩ from which we observe that there exists a
bijective mapping between Ls(P ′) and L(P ′)\{ε} where ε
refers to the empty word (i.e., the empty action sequence).
We use L∗(P ′) to refer to L(P ′)\{ε}. We can further iden-
tify the homomorphism h from this bijective mapping where
for each s ∈ ΣS , h(s) = a for an action a ∈ A if pa ∈ s,
and h(sI) = ε. More concretely, L∗(P ′) can be represented
as {h(ω) | ω ∈ L} where for each word ω = ⟨s1 · · · sn⟩
(n ∈ N) in L, h(ω) is h(⟨s1 · · · sn⟩) = ⟨h(s1) · · ·h(sn)⟩.

By our assumption, Ls(P ′) is star-free and henceforth
regular. L∗(P ′) is thus also regular because regular lan-
guages are closed under homomorphisms (see the work by
Hopcroft, Motwani, and Ullman (2007) for more details).

Moreover, L∗(P ′) is non-counting provided that Ls(P ′)
is. For this, we take n∗

0 = max{2, n0+1} where n0 satisfies
that for each n ≥ n0 and any πu, πv, πw ∈ Σ∗

S , πuπ
n
v πw

is a word in Ls(P ′) iff πuπ
n+1
v πw is in Ls(P ′). Consider

any u, v, w ∈ Σ∗ (Σ = A) such that uvnw ∈ L∗(P ′) for
some n ≥ n∗

0. That is, uvnw is an action sequence that is
a solution to P ′. We assume that uvnw results in the state
sequence π. We can divide π into three subsequences, i.e.,
π = πuπvnπw. πu is the state sequence resulting from ap-
plying u in sI . We use su ∈ 2F

′
to refer to the last state

in πu, i.e., sI →∗
u su. πvn is the consequence of apply-

ing vn in su. We use sv to refer to the last state in πvn ,
i.e., su →∗

vn sv . Similarly, πw and sw refer to the state se-
quence resulting from applying w in sv and the last state in
πw, respectively. Further, suppose that su →∗

v s for some
s ∈ 2F

′
. Since n ≥ 2, we know that su →∗

vk s for each
k ≥ 1 by consulting the argument proved in Lem. 1. Thus,
s = sv . We use πv to denote the state sequence that is
the consequence of applying v in the state su. Further, we
also have sv →∗

v sv , because su →∗
v2 sv and su →∗

v sv
hold simultaneously. Thus, applying vk with k ≥ 1 in sv
results in the state sequence γk

v where γv is the state se-
quence that is the consequence of applying v in sv . It follows
that πvn can be written as πvn = πvγ

n−1
v . Consequently,

π = πuπvγ
n−1
v πw. Since π ∈ Ls(P ′) and n − 1 ≥ n0, we

have β = πuπvγ
n
v πw ∈ Ls(P ′) as well by the non-counting

property of Ls(P ′). Applying the homomorphism h on β
results in h(β) = uvn+1w. Hence, uvn+1w ∈ L∗(P ′).

On the other hand, the fact that uvnw is in L(P ′) given
uvn+1w ∈ L(P ′) for any n ≥ n∗

0 can be proved in the same
way. Thus, L∗(P ′) is both regular and non-counting, and
hence it is star-free if Ls(P ′) is star-free. As a consequence,
L(P ′) = L∗(P ′) ∪ {ε} is thus also a star-free language if
Ls(P ′) is star-free, because the union of a star-free language
and the language {ε} is star-free by definition.

To prove that Ls(P ′) is star-free, we observe that Ls(P ′)
can be seen as the intersection of two languages L1

s(P ′) and

L2
s(P ′) in which L1

s(P ′) is the set of all words (i.e., state se-
quences) that are consequences of applying action sequences
in sI in P ′ and L2

s(P ′) is the set of all words satisfying g by
extending to infinity, i.e.,

L2
s(P ′) = {⟨s1 · · · sn⟩ | n ∈ N, ⟨s1 · · · snsn · · · ⟩ ⊨ g}

We will show that both L1
s(P ′) and L2

s(P ′) are star-free.

Lemma 3. L1
s(P ′) is star-free.

Proof. The star-freeness of L1
s(P ′) can be recognized by

noticing that L2
s(P ′) is an inverse homomorphism h−1 of

the language of the ST RIPS planning problem P∗ =
(F ′,A, δ′, sI , ∅) where h is the homomorphism defined pre-
viously. Since L(P∗) is star-free and henceforth regular,
and regular languages are closed under inverse homomor-
phism (Hopcroft, Motwani, and Ullman 2007), L1

s(P ′) is
thus regular. To show that L1

s(P ′) is non-counting, we take
n∗
0 = n0 where n0 satisfies that for any u, v, w ∈ Σ∗,

uvnw ∈ L(P∗) iff uvn+1w ∈ L(P∗) for each n ≥ n0.
Consider any πu, πv, πw ∈ Σ∗

P such that π = πuπ
n
v πw is a

word in the language L1
s(P ′) for some n ≥ n∗

0, the inverse
homomorphism implies that ω = h(πu)h

n(πv)h(πw) is a
word in L1

s(P ′). Let h(πu) = u, h(πv) = v, and hπw = w,
the non-counting property of L(P∗) ensures that uvn+1w ∈
L(P∗). Since the consequence of applying uvn+1w in sI
is h(πu)h

n+1(πv)h(πw), we have πuπ
n
v πw ∈ L1

s(P ′). The
converse of the argument can be proved similarly.

Next we prove that L2
s(P ′) is star-free. For this, we show

that L2
s(P ′) can be described by a First Order Logic (FOL)

formula as any language that can be described by a FOL for-
mula is star-free (Thomas 1997; Diekert and Gastin 2008).

To this end, we first introduce the concept of word mod-
els for FOL adapted from the one by Thomas (1997) and
by De Giacomo and Vardi (2013). Given a set of proposi-
tions P and an alphabet ΣP ⊆ 2P , a word ω = ⟨a1 · · · an⟩
over ΣP can be described as a structure (W, R) where
W = {i | 1 ≤ i ≤ |ω|} is the domain of the structure,
and R = {S,<} ∪ {Qp | p ∈ P} is the set of relations. For
any x, y ∈ W , (x, y) ∈ S if y = x+1. < is the natural order
relation defined over natural numbers. Qp for some p ∈ P is
a unary relation such that for any x ∈ W , x ∈ Qp if p ∈ ax.
The language of a FOL formula ϑ, L(ϑ), is the set of all
structures (i.e., words) satisfying ϑ.

Lemma 4. L2
s(P ′) is star-free.

Proof. We first give the construction T adapted from the
ones by Diekert and Gastin (2008) and De Giacomo and
Vardi (2013), which, by given a set of propositions P , trans-
forms an LTL formula φ into a FOL formula T (φ)(x) that
contains a free variable x and satisfies that for each se-
quence π = ⟨s1 · · · sn⟩ and its infinite extension π′ =
⟨s1 · · · snsn · · · ⟩ (n ∈ N and si ∈ 2P for each 1 ≤ i ≤ n),
πi ⊨ T (φ)[x 7→ i] iff π′

i ⊨ φ for each i with 1 ≤ i ≤ n. T
can be constructed inductively as follows.
• If φ = ⊤, T (φ)(x) = ⊤.
• If φ = p for some p ∈ P , T (φ)(x) = Qp(x).
• If φ = φ1 ∧ φ2, T (φ)(x) = T (φ1)(x) ∧ T (φ2)(x).
• If φ = ¬φ1, T (φ)(x) = ¬T (φ1)(x).

• If φ = #φ1, T (φ)(x) =
(
∃y

(
S(x, y) ∧ T (φ1)(y)

))
∨((

∄y(S(x, y))
)
∧ T (φ1)(x)

)
.

• Lastly, for the case φ = φ1 U φ2, T (φ)(x) =
(
∃y

(
(x ≤

y) ∧ T (φ2)(y)
))

∧
(
∀z

(
(x ≤ z < y) → T (φ1)(z)

))
.

The construction presented differs from the ones by Diekert
and Gastin (2008) and De Giacomo and Vardi (2013) only
in the case where φ = #φ1. Intuitively, the construction for
this case means that if the position y = x + 1 exists in π,
i.e., x is not the end of a sequence π, then πy ⊨ T (φ1)(y),
otherwise, πx ⊨ T (φ1)(x). We can show that, given any
π = ⟨s1 · · · sn⟩, πi ⊨ T (φ)[x 7→ i] ⇐⇒ π′

i ⊨ φ holds for
each 1 ≤ i ≤ n by induction on T .

We now prove that given an LTL formula φ and a state
sequence π = ⟨s1 · · · sn⟩, πi ⊨ T (φ)[x 7→ i] ⇐⇒ π′

i ⊨ φ
holds for each 1 ≤ i ≤ n, where π′

i = ⟨s1 · · · snsn · · · ⟩.
We prove this by induction on the construction of T .

• φ = ⊤: The property holds naturally.
• φ = p: If πi ⊨ T (φ)[x 7→ i], then p ∈ si. Thus, π′

i ⊨ φ.
Conversely, if π′

i ⊨ φ, p ∈ si holds as well. Conse-
quently, πi ⊨ T (φ)[x 7→ i].

• φ = φ1 ∧ φ2: Suppose πi ⊨ T (φ)[x 7→ i]. We have
πi ⊨ T (φ1)[x 7→ i] and πi ⊨ T (φ2)[x 7→ i]. By the
induction hypothesis, π′

i ⊨ φ1 and π′
i ⊨ φ2. Hence, π′

i ⊨
φ. Conversely, if π′

i ⊨ φ1 and π′
i ⊨ φ2, we have πi ⊨

T (φ1)[x 7→ i] and πi ⊨ T (φ2)[x 7→ i] by the induction
hypothesis. Thus, πi ⊨ T (φ)[x 7→ i].

• φ = ¬φ1: Suppose πi ⊨ ¬T (φ1)[x 7→ i]. It follows that
πi ⊭ T (φ1)[x 7→ i]. Thus, by the induction hypothesis,
π′
i ⊭ φ1, which is equivalent to π′

i ⊨ φ. Conversely, if
π′
i ⊭ φ1, we also have πi ⊭ T (φ1)[x 7→ i] by the induc-

tion hypothesis. Thus, πi ⊨ ¬T (φ1)[x 7→ i].
• φ = #φ1: For any 1 ≤ i < n, we observe that πi ⊨
T (φ)[x 7→ i] iff πi+1 ⊨ T (φ1)[y 7→ i+1]. Since i+1 ≤
n, we have πi+1 ⊨ T (φ1)[y 7→ i+1] iff π′

i+1 ⊨ φ1 by the
hypothesis. Thus, πi ⊨ T (φ)[x 7→ i] ⇐⇒ π′

i ⊨ φ for
any 1 ≤ i < n. Further, when i = n, πi ⊨ T (φ1)[x 7→ i]
iff πi ⊨ T (φ1)[x 7→ i], and π′

i ⊨ φ iff π′
i+1 ⊨ φ1 by the

semantics of LTL. Since i = n and the state sn repeats
itself indefinitely, we have π′

i+1 ⊨ φ1 iff π′
i ⊨ φ1. Hence,

πi ⊨ T (φ1)[x 7→ i] iff π′
i ⊨ φ1 for i = n. Thus, πi ⊨

T (φ)[x 7→ i] iff π′
i ⊨ φ for all 1 ≤ i ≤ n.

• φ = φ1 U φ2: Suppose πi ⊨ T (φ)[x 7→ i]. There exists
a j with i ≤ j ≤ n such that πj ⊨ T (φ2)[y 7→ j]. By
the induction hypothesis, π′

j ⊨ φ2. Further, for each k
with i ≤ k < j, πk ⊨ T (φ1)[z 7→ k]. By the induction
hypothesis, we also have π′

k ⊨ φ1. Taken together, π′
i ⊨

φ. Conversely, suppose π′
i ⊨ φ. There exists a j with j ≥

i such that π′
j ⊨ φ2. We only need to consider the case

where j ≤ n because sn in π′ repeats itself indefinitely,
and hence π′

j ⊨ φ2 iff π′
n ⊨ φ2 for all j > n. By the

induction hypothesis, π′
j ⊨ φ2 implies πj ⊨ T (φ2)[y 7→

j]. Further, for each i ≤ k < j, π′
k ⊨ φ1. It follows that

πk ⊨ T (φ1)[z 7→ k]. Thus, πi ⊨ T (φ)[x 7→ i].
Hence, πi ⊨ T (φ)[x 7→ i] ⇐⇒ π′

i ⊨ φ. We can thus
construct the FOL formula T (g)[x 7→ 1] describing the lan-
guage L2

s(P ′), which implies that L2
s(P ′) is star-free.

Therefore, the language Ls(P ′), which is the intersection
of L1

s(P ′) and L2
s(P ′), is star-free. It follows that L(P ′) and

henceforth L(P) are star-free.
Lastly, we show that the subset relationship is strict. We

will prove that there exists no ST RIPS-L planning prob-
lem that can express the star-free languages {⟨a a⟩}.

Lemma 5. {⟨a a⟩} /∈ LST RIPS-L.

Proof. The proof is a simple extension of the one given by
Höller et al. (2016) for showing that {⟨a a⟩} /∈ LST RIPS .
They used this to show that LST RIPS can’t express all reg-
ular languages (cf. Cor. 1). {⟨a a⟩} however also happens to
be star-free, so we can generalize this to STRIPS with LTL.

By Prop. 1 (Höller et al. 2016), for an arbitrary
ST RIPS-L planning problem P , the infinite extension of
the state sequence obtained by applying a = ⟨a · · · a⟩ with
|a| ≥ 2 in the initial state of P and of the one obtained by ap-
plying ⟨a a⟩ are identical. Hence, if ⟨a a⟩ is a solution, then
a is also a solution, which shows the lemma.

Taken together, we have the result LST RIPS-L ⊊ SF .

Theorem 2. LST RIPS-L ⊊ SF .

One consequence of artificially extending a state sequence
to infinite by repeating its last state is that ST RIPS-L
planning problems lack the ability of expressing some star-
free languages in which words are of a fixed length, e.g., the
language {⟨a a⟩} used in the presented proof. It is thus nat-
ural to ask whether the ST RIPS-FL formalism in which
state sequences remain finite has the same expressive power
as star-free languages (De Giacomo and Vardi 2013).

The answer is positive. To get an intuition about this, we
construct a planning problem P = (F ,A, δ, sI , g) that can
express the language {⟨a a⟩} which cannot be expressed by
any ST RIPS and ST RIPS-L planning problem. We let
F = {pa′ | a′ ∈ A} and δ(a) = (∅, {pa}, ∅) for the ac-
tion a ∈ A. For all a′ ∈ A with a′ ̸= a, we define
δ(a′) = ({pa′}, ∅, ∅). Further, we let g = #(pa∧#(pa∧⊙))
and sI = ∅. By construction, the sequence ⟨a a⟩ is the only
solution, because the term ‘⊙’ in the formula enforces that
any state sequence satisfying g must terminate after applying
two actions, and because a is the only applicable action. It
can be seen from this example that the ability of expressing
‘the end of the sequence’ in f-LTL makes a ST RIPS-FL
planning problem able to restrict its solutions to a fixed
length, which thus gives the planning problems in this for-
malism the ability to express star-free languages with fixed
length. Informally speaking, the ST RIPS-FL formalism
is able to count up to a bound, whereas it is not possible for
the ST RIPS and ST RIPS-L formalism.

We formally prove the argument that the ST RIPS-FL
formalism is as expressive as star-free languages in two
steps. We first show that every language described by a
ST RIPS-FL planning problem is star-free.

Theorem 3. LST RIPS-FL ⊆ SF .

Proof. Let P = (F ,A, δ, sI , g) be a ST RIPS-FL plan-
ning problem, De Giacomo and Vardi (2013) have shown

that the language L(g) of the f-LTL formula g over the al-
phabet 2F is star-free. Thus, there exists a deterministic fi-
nite automaton D = (Q, 2F , δq, q0, F) capturing L(g) in
which Q is the set of the states of the DFA, δq : Q×2F 7→ Q
is the state transition function, q0 is the initial state, and
F ⊆ Q is the set of final states (e.g., see the construction
by De Giacomo and Favorito (2021)). Additionally, the be-
haviors of actions in P can be simulated by a state transition
system T = (2F ,A, δa) where δa : 2F ×A 7→ 2F is a func-
tion such that for any s, s′ ∈ 2F and a ∈ A, δ(s, a) = s′ iff
s →a s′ (De Giacomo and Vardi 1999; Höller et al. 2014).

We first show that there is a DFA D̂ = (Q̂,A, q̂0, δ̂q, F̂)
capturing the language of P that is a product of D and T . We
construct D̂ as follows. The set of states Q̂ = Q× 2F . The
initial state q̂0 = (q0, sI). For any q̂, q̂′ ∈ Q̂ with q̂ = (q, s)

and q̂′ = (q′, s′), and a ∈ A, δ̂q(q̂, a) = q̂′ iff δq(q, s) = q′

and δa(s, a) = s′. Lastly, the set of final states F̂ = F ×2F .
The function δ̂ guarantees that 1) the state s can trigger the
transition from q to q′ in Q, and 2) s →a s′. Thus, by con-
struction, a word in Σ∗, i.e., an action sequence is accepted
by D̂ iff the state sequence that is a consequence of applying
this action sequence in sI is accepted by D. This shows that
the language of P is regular.

We prove the star-freeness of L(P) by showing that L(P)
is non-counting. Since L(g) is star-free, there exists an n0 ∈
N such that for arbitrary words u, v, and w over the alphabet
2F , uvnw ∈ L(g) iff uvn+1w ∈ L(g) for all n ≥ n0. Since
applying an action sequence repeatedly in some state results
in a repeated state sequence, we can let n∗

0 = max{2, n0}
which ensures that for all n ≥ n∗

0, xynz ∈ L(P) for any
x, y, z ∈ Σ∗ iff xyn+1z ∈ L(P). Any language described
by a ST RIPS-FL planning problem is thus star-free.

Next we prove the converse of this theorem.

Theorem 4. LST RIPS-FL ⊇ SF .

Proof. Given any star-free language L over the alphabet Σ,
Wilke (1999) has proven that L can be described by an f-
LTL formula φ defined over the set of propositions P =
{pa | a ∈ Σ}. Concretely, a word ω = ⟨a1 · · · an⟩ (n ∈ N0

and ai ∈ Σ for each 1 ≤ i ≤ n) is in L iff the state sequence
π = ⟨{pa1

} · · · {pan
}⟩ satisfies φ, i.e., ω ∈ L ⇐⇒ π ⊨ φ.

We exploit this result to show that for any such f-LTL for-
mula φ together with the star-free language L defined by
it, there exists a ST RIPS-FL planning problem describ-
ing the same language. We consider the planning problem
P = (F ,A, δ, ∅, g) in which F = P , g = φ, and for
any a ∈ A, δ(a) = (∅, {pa}, {pa′ | a′ ∈ A, a′ ̸= a})
(A = Σ by our assumption). By construction, any ac-
tion sequence a = ⟨a1 · · · an⟩ results in the state sequence
π = ⟨{pa1} · · · {pan}⟩, and it is a solution iff π ⊨ g. We can
thus conclude that, by consulting the result by Wilke (1999),
a word ω is in L iff ω can be seen as a solution to P .

Taken together, the languages of the ST RIPS-FL for-
malism are equivalent to star-free languages.

Corollary 2. LST RIPS-FL = SF .

Expressiveness of Hierarchical Formalisms
We move on now to consider the expressiveness of hierarchi-
cal planning formalisms defined early. One key observation
made by Höller et al. (2014) about the language of a plan-
ning problem P = (D, cI , sI , g) with D = (F ,A, C,M, δ)
in some hierarchical planning formalism, where g is a goal
description, an LTL formula, or an f-LTL formula accord-
ing to the formalism, is that it can be viewed as the inter-
section of the language of a hierarchical planning problem
P1 = (D′, cI , sI , g

′) with prec(a), add(a), and del(a) be-
ing empty sets for all a ∈ A (i.e., D and D′ differ solely
in the preconditions and effects of actions), and g′ = ∅ or
⊤ with respect to the formalism and a non-hierarchical one
P2 = (F ,A, δ, sI , g). We use the notations Lno-PE(P) and
Lno-H(P) to respectively refer to the language of P1 and of
P2. The following two simple propositions related to this
observation will be useful in our discussion which, infor-
mally speaking, state that the set of all languages governed
by the hierarchical parts of planning problems in any one of
the presented hierarchical formalism (with or without task
insertions, but not both) is identical to each other.

Proposition 2. Let P1, P2, and P3 be planning problems
in the formalisms HT N , HT N -L, and HT N -FL respec-
tively which have the same method set, then Lno-PE(P1) =
Lno-PE(P2) = Lno-PE(P3).

Proposition 3. Let P1, P2, and P3 respectively be plan-
ning problems in the formalisms T IHT N , T IHT N -L,
and T IHT N -FL which have the same method set, then
Lno-PE(P1) = Lno-PE(P2) = Lno-PE(P3).

We start by considering the T IHT N formalism, whose
languages have been shown to be a strict subset of regu-
lar languages (Höller et al. 2016, Thm. 2). We give a more
precise upper bound here for the expressive power of the
T IHT N formalism and show that the languages of this for-
malism are a strict subset of star-free languages.

Theorem 5. LT IHT N ⊊ SF .

Proof. Given an arbitrary T IHT N planning problem P ,
since L(P) = Lno-PE(P) ∩ Lno-H(P) and Lno-H(P) is star-
free by Cor.1, it is sufficient to show that Lno-PE(P) is star-
free. Let P1 be the relaxed version of P whose language
is Lno-PE(P), the result by (Geier and Bercher 2011) pro-
vided the fact that for any solution tn (i.e., a primitive task
network) to P1, there exists another task network tn′ into
which can be decomposed from the initial task by an acyclic
decomposition tree and can be expanded to tn via task in-
sertions. Since there are finite many such acyclic decompo-
sition trees, the number of such tn′ is finite. We use the nota-
tion Tac to denote the set of all primitive task networks that
are decomposed from the initial task by acyclic decomposi-
tion trees. Therefore, the set of the words W = {ω | ω =
α(tn), tn ∈ L(tn), tn ∈ Tac} is finite where L(tn) is the
set of all executable linearizations of tn in the initial state of
P1. Thus, Lno-PE(P) can be constructed as follows:

Lno-PE(P) =
⋃

ω∈W
{Σ∗ a1 Σ

∗ a2 · · ·Σ∗ an Σ
∗}

where ω = ⟨a1 · · · an⟩ ∈ W for some n ∈ N. Thus, the
language Lno-PE(P) is star-free.

Further, the language {⟨a a⟩} cannot be expressed by any
T IHT N planning problem, because if the action sequence
⟨a a⟩ is a solution to a T IHT N planning problem, then by
Prop.1 (Höller et al. 2016), an arbitrary number of the action
a can be appended to this sequence, which results in another
solution. Therefore, the languages of this formalism are a
strict subset of star-free languages.

One consequence of this result is that the languages of the
T IHT N -L formalism also form a strict subset of star-free
languages, because for any T IHT N -L planning problem
P , Prop.3 in conjunction with the argument made in Thm. 5
asserts the star-freeness of Lno-PE(P), and the star-freeness
of Lno-H(P) follows from Cor. 2. Hence, L(P) is star-free.
Further, we can prove that the language {⟨a a⟩} cannot be
expressed by any T IHT N -L planning problem by noting
that inserting an arbitrary number of a’s to the action se-
quence ⟨a a⟩ results in another solution to P .

Corollary 3. LT IHT N ⊊ LT IHT N -L ⊊ SF .

The result LT IHT N ⊊ LT IHT N -L holds because of the
fact that the language Σ2aΣ∗ can be expressed by some
T IHT N -L planning problem but not by any T IHT N
planning problem. The justification for this is similar to the
one made in Thm. 1, that is, if the word ⟨b b a ai1 · · · ain⟩
with a, b, aik ∈ Σ for each 1 ≤ k ≤ n is in the lan-
guage of some T IHT N planning problem, then by Prop.
1 (Höller et al. 2016), the word ⟨b b · · · b aai1 · · · ain⟩ with
more than two b’s before a is also in the language of this
planning problem, but it is not in the designated language.
Hence, there exists no T IHT N planning problem which
can express the language Σ2aΣ∗. Further, observe that for
any ST RIPS-L planning problem P = (F ,A, δ, sI , g),
the T IHT N -L planning problem P ′ = (D, cI , sI , g) with
D = (F ,A, C, {(cI , (∅, ∅, ∅))}, δ) expresses the same lan-
guage as that of P . Since the language Σ2aΣ∗ can be ex-
pressed by some ST RIPS-L planning problem, it can thus
be expressed by a T IHT N -L planning problem.

We close the discussion over T IHT N by considering
the expressive power of the T IHT N -FL formalism.

Theorem 6. LT IHT N -FL = SF .

Proof. We first show that every star-free language can be
expressed by a T IHT N -FL planning problem. This fol-
lows trivially from the fact that for any ST RIPS-FL
planning problem P = (F ,A, δ, sI , g), the language of P
is identical to that of the T IHT N -FL planning problem
P ′ = (D, cI , sI , g) with D = (F ,A, C, {(cI , (∅, ∅, ∅))}, δ),
i.e., LST RIPS-FL ⊆ LT IHT N -FL. Since LST RIPS-FL =
SF , we thus have SF ⊆ LT IHT N -FL. Conversely, for any
T IHT N -FL planning problem P , the language Lno-PE(P)
and Lno-H(P) are both star-free by Prop.3 and by Cor.2.
Hence, their intersection is also star-free.

Our previous discussion is restricted to the (hierarchical
or non-hierarchical) planning formalisms which are strictly
less expressive than star-free languages (and henceforth reg-
ular languages). Next we turn our attention to the HT N

planning formalism which has more expressive power than
regular languages. We start by considering a special class
of hierarchical planning problems (i.e., HT N / HT N -L
/ HT N -FL planning problems) where all task networks
in all methods are totally ordered. We use the notations
T OHT N , T OHT N -L, and T OHT N -FL to refer to
the class of totally ordered planning problems in the re-
spective formalism. The languages described by T OHT N
have been shown to be equivalent to context-free languages
(CFL) by Höller et al. (2014, Thm. 6). The next result
shows that the expressive power of T OHT N -L and of
T OHT N -FL does not increase by incorporating LTL
and f-LTL, i.e., they are still equivalent to CFL. We use
LT OHT N -L and LT OHT N -FL to refer to the languages re-
spectively described by those classes of planning problems.
Theorem 7. LT OHT N -L = LT OHT N -FL = CFL.

Proof. We start by considering the class T OHT N -L. For
any planning problem P in this set, the result by Höller
et al. (2014, Thm. 6) shows that Lno-PE(P) is context-free,
because by Prop. 2, there must be a planning problem P ′

in T OHT N such that Lno-PE(P) = Lno-PE(P ′). Since
Lno-H(P) is star-free and henceforth regular, its intersec-
tion with Lno-PE(P) is thus context-free. Conversely, Höller
et al. (2014, Thm. 6) also stated that for any context-free
language L there exists a planning problem P in T OHT N
such that L = Lno-PE(P). It follows that any context-free
language can be described by a problem in T OHT N -L.
One can easily verify that the same argument holds for the
class T OHT N -FL as well.

Next we consider HT N , HT N -L, and HT N -FL.
Theorem 8. LHT N ⊆ LHT N -L ⊆ LHT N -FL.

Proof. We start by arguing that LHT N ⊆ LHT N -L. Given
an arbitrary HT N planning problem P , by Prop. 2, there
must exist an HT N -L planning problem P ′ such that
Lno-PE(P) = Lno-PE(P ′). Further, we can always construct
a ST RIPS-L planning problem such that Lno-H(P) =
Lno-H(P ′), because Lno-H(P) and Lno-H(P ′) are governed by
a ST RIPS planning problem and a ST RIPS-L planning
problem respectively, and the languages of the ST RIPS
formalism are a strict subset of that of ST RIPS-L. Thus,
every language described by an HT N planning problem can
also be described by an HT N -L planning problem.

The argument for LHT N -L ⊆ LHT N -FL is similar to
the one just provided. One can verify that for any HT N -L
planning problem P , we can construct a HT N -FL plan-
ning problem P ′ such that Lno-PE(P) = Lno-PE(P ′) and
Lno-H(P) = Lno-H(P ′).

Lastly, we place the languages of these three formalisms
into the Chomsky hierarchy. We first observe from Thm. 7
that CFL is clearly a strict subset of LHT N , of LHT N -L,
and of LHT N -FL respectively, because the languages (i.e.,
CFL) described by totally ordered planning problems in a
hierarchical formalism must be a subset of the languages
of this formalism. For the upper bound, we consult the re-
sult by Höller et al. (2014, Cor. 2) that for any HT N plan-
ning problem P , Lno-PE(P) is a context-sensitive language

(CSL), and by Prop. 2, the argument holds for the HT N -L
and HT N -FL formalism as well. Further, for any planning
problem P in a hierarchical formalism, Lno-H(P) is star-free
and henceforth regular, and the intersection of a context-
sensitive language and a regular one is still context-sensitive.
Therefore, the next result follows immediately.

Corollary 4. CFL ⊆ LHT N ⊆ LHT N -L ⊆ LHT N -FL ⊆
CSL.

Conclusion
In this paper, we discussed the expressive power of the
ST RIPS formalism and the HT N formalism in conjunc-
tion with LTL as well as its variant finite LTL. For the former
one, our results show that when combining the ST RIPS
formalism with LTL (i.e., the ST RIPS-L formalism), the
set of languages described by planning problems in this for-
malism is a strict subset of star-free languages, though the
languages of LTL are equivalent to star-free ones over words
of infinite length. By contrast, the ST RIPS-FL formal-
ism, which fuses finite LTL with the ST RIPS formalism,
turns out to be as expressive as star-free languages. For the
latter one, we have shown that all variants, i.e., the HT N ,
HT N -L, and HT N -FL formalism, are more expressive
than context-free languages but less expressive than context-
sensitive languages when task insertions are not allowed,
otherwise, the expressiveness of these formalisms with task
insertions is less or equivalent to star-free languages.

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning with Task Insertion. In IJCAI 2015,
1502–1508. AAAI.
Bacchus, F.; and Kabanza, F. 1996. Planning for Temporally
Extended Goals. In AAAI 1996, 1215–1222. AAAI.
Baier, C.; and Katoen, J. 2008. Principles of Model Check-
ing. MIT.
Baier, J. A.; and McIlraith, S. A. 2006a. Planning with First-
Order Temporally Extended Goals using Heuristic Search.
In AAAI 2006, 788–795. AAAI.
Baier, J. A.; and McIlraith, S. A. 2006b. Planning with Tem-
porally Extended Goals Using Heuristic Search. In ICAPS
2006, 342–345. AAAI.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In IJCAI 2019, 6267–6275. IJCAI.
Bienvenu, M.; Fritz, C.; and McIlraith, S. A. 2006. Planning
with Qualitative Temporal Preferences. In KR 2006, 134–
144. AAAI.
Camacho, A.; Icarte, R. T.; Klassen, T. Q.; Valenzano, R. A.;
and McIlraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In IJCAI 2019, 6065–6073. IJCAI.
Chomsky, N. 1956. Three Models for the Description of
Language. IEEE Transactions on Information Theory, 2(3):
113–124.

De Giacomo, G.; and Favorito, M. 2021. Compositional
Approach to Translate LTLf/LDLf into Deterministic Finite
Automata. In ICAPS 2021, 122–130. AAAI.
De Giacomo, G.; and Vardi, M. Y. 1999. Automata-
Theoretic Approach to Planning for Temporally Extended
Goals. In ECP 1999, volume 1809, 226–238. Springer.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In IJCAI
2013, 854–860. AAAI.
Diekert, V.; and Gastin, P. 2008. First-order definable lan-
guages. In Logic and Automata: History and Perspectives,
volume 2, 261–306. Amsterdam University Press.
Edelkamp, S. 2006. On the Compilation of Plan Constraints
and Preferences. In ICAPS 2006, 374–377. AAAI.
Erol, K.; Hendler, J.; and Nau, D. S. 1996. Complexity re-
sults for HTN planning. Annals of Mathematics and Artifi-
cial Intelligence, 18(1): 69–93.
Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artificial Intelligence, 2(3/4): 189–208.
Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. Journal
of Artificial Intelligence Research, 20: 61–124.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In IJCAI 2011, 1955–1961.
AAAI.
Ghallab, M.; Howe, A. E.; Knoblock, C. A.; McDermott,
D.; Ram, A.; Veloso, M. M.; Weld, D. S.; and Wilkins,
D. E. 1998. PDDL–the planning domain definition lan-
guage. Technical Report CVC TR-98-003/DCS TR-1165.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.
In ECAI 2014, 447–452. IOS.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the Expressivity of Planning Formalisms through
the Comparison to Formal Languages. In ICAPS 2016, 158–
165. AAAI.
Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. 2007. In-
troduction to automata theory, languages, and computation.
Addison-Wesley.
Huth, M.; and Ryan, M. 2000. Logic in computer science :
modelling and reasoning about systems. Cambridge Univer-
sity Press.
Mateescu, A.; and Salomaa, A. 1997. Formal Languages:
an Introduction and a Synopsis, 1–39. Springer.
Pinchinat, S.; Rubin, S.; and Schwarzentruber, F. 2022. For-
mula Synthesis in Propositional Dynamic Logic with Shuf-
fle. In AAAI 2022. AAAI.
Pnueli, A. 1977. The Temporal Logic of Programs. In SFCS
1977, 46–57. IEEE Computer Society.
Thomas, W. 1997. Languages, Automata, and Logic, 389–
455. Springer.
Wilke, T. 1999. Classifying Discrete Temporal Properties.
In STACS 1999, volume 1563, 32–46. Springer.

