
On the Expressive Power of Planning Formalisms in Conjunction with LTL
Songtuan Lin & Pascal Bercher

College of Engineering & Computer Science, The Australian National University

{firstName.lastName@anu.edu.au}

Introduction

Objective: The objective of this paper is to study the expressiveness
of various hierarchical and non-hierarchical planning formalisms in
conjunction with Linear Temporal Logic (LTL).
Method: The approach we consider for this purpose is viewing the
solution set of a planning problem as a formal language and compare
it with other formal ones.

LTL and Finite LTL

LTL: The syntax of an LTL formula φ is defined as follows:

φ = ⊤ | p | ¬φ | φ1 ∧ φ2 | ⃝φ | φ1 U φ2

The semantics of LTL is defined in terms of a state sequence of infinite
length: π = ⟨s1 s2 · · · ⟩. We denote πJiK = ⟨si · · · ⟩.

• πJiK ⊨ ⊤

• πJiK ⊨ ¬φ iff πJiK ⊭ φ

• πJiK ⊨ p iff p ∈ si

• πJiK ⊨ ⃝φ iff πJi+ 1K ⊨ φ

• πJiK ⊨ φ1 ∧ φ2 iff πJiK ⊨ φ1 ∧ πJiK ⊨ φ2

• πJiK ⊨ φ1 U φ2 iff there exists a j ≥ i such that πJjK ⊨ φ2 and
πJkK ⊨ φ1 for all i ≤ k < j.

Finite LTL: The syntax of f-LTL is identical to that of LTL, but the
semantics is defined in terms of a finite state sequence π = ⟨s1 · · · sn⟩:

• πJiK ⊨ ⊤

• πJiK ⊨ ¬φ iff πJiK ⊭ φ

• πJiK ⊨ p iff p ∈ si

• πi ⊨ ⃝φ iff i < n and πi+1 ⊨ φ

• πJiK ⊨ φ1 ∧ φ2 iff πJiK ⊨ φ1 ∧ πJiK ⊨ φ2

• πi ⊨ φ1Uφ2 iff there exists a j with i ≤ j ≤ n such that πj ⊨ φ2,
and for each i ≤ k < j, πk ⊨ φ1

One crucial power of f-LTL is to express the end of a state sequence,
written ⊙, in terms of the operator ⃝:

⊙ = ⃝(¬⊤)

More concretely, we have that πJiK ⊨ ⊙ iff i = n.

Non-hierarchical Planning Formalism

A ST RIPS planning problem P is a tuple P = (F ,A, δ, sI , g):

• F : A set of propositions

• g: g ⊆ F

• A: A set of actions

• sI : sI ∈ 2F

• δ: A → 2F × 2F × 2F – δ(a) = (prec(a), eff +(a), eff −(a))

A solution to P is an action sequence a = ⟨a1 · · · an⟩ which results in
a state sequence π = ⟨s0 · · · sn⟩ such that s0 = sI , g ⊆ sn, and for
each 1 ≤ i ≤ n, prec(ai) ⊆ si and si = (si−1 \ eff −(ai)) ∪ eff +(ai).

a1 a2 · · · an

s1sI s2 · · · sn sn · · ·

repeat indefinitely

A ST RIPS-L or a ST RIPS-FL planning problem P is a tuple P =
(F ,A, δ, sI , g) where g is respectively an LTL or an f-LTL formula.

A solution to a ST RIPS-L or a ST RIPS-FL problem is an action
sequence a which results in a state sequence π with πJ0K ⊨ g.

Remark: For a ST RIPS-L problem, since the semantics of LTL is
defined over an infinite state sequence, we have to artificially extend
π to infinite by repeating its last state indefinitely (see the figure).

Hierarchical Planning Formalism

An HT N planning problem is P = ((F ,A, C,M, δ), cI , g) where C is
a set of compound tasks, and M is a set of methods.

cI A compound task is decomposed
into a partial order set of actions
and compound tasks called task
network by a method.
A solution is a task network con-
sisting solely of actions which is
obtained from the initial com-
pound task and has an executable
linearisation resulting in a state
sequence π satisfying g.

We can incorporate LTL and f-LTL into HTN planning formalism by
replacing g with a respective LTL or f-LTL formula.

Languages of Planning Problems

The language of a non-hierarchical planning problem P :

L(P) = {ω | ω is a solution to P}

The language of a hierarchical planning problem P :

L(P) =
{
π
∣∣∣ π is an executable linearization of tn,
tn is a solution to P

}
The class of languages of a (hierarchical or non-hierarchical) planning
formalism X, e.g., X = ST RIPS-FL:

LX = {L(P) | P is a planning problem in the formalism X}

Results and Interpretation

CSL

CFL

LHT N ⊆ LHT N -L ⊆ LHT N -FL

CFL = LT OHT N -L = LT OHT N -FL

REG

SF = Lf-LTL SF = LT IHT N -FLLST RIPS-FL = SF

LST RIPS-L ⊊ SF

LST RIPS ⊊ SF

LT IHT N -L ⊊ SF

LT IHT N ⊊ SF

LST RIPS ⊊ LST RIPS-L
LT IHT N ⊊ LT IHT N -L

• Incorporating LTL and f-LTL into the ST RIPS formalism in-
creases its expressiveness. In particular:

LST RIPS ⊊ LST RIPS-L ⊊ LST RIPS-FL = SF ⊊ REG

where SF and REG refer to the star-free languages and regular
languages, respectively.

• Incorporating LTL and f-LTL into T IHT N also increases its
expressiveness. In particular:

LT IHT N ⊊ LT IHT N -L ⊊ LT IHT N -FL = SF

where T IHT N refers to HT N planning with task insertions.

• Incorporating LTL and f-LTL into T OHT N (total order HT N
planning) does not increase its expressiveness. They are all
equivalent to context-free languages (CFL):

LT OHT N = LT OHT N -L = LT OHT N -FL = CFL

• All formalisms are below context-sensitive languages (CSL):

LHT N ⊆ LHT N -L ⊆ LHT N -FL ⊆ CSL

