On the Expressive Power of Planning Formalisms in Conjunction with LTL

Songtuan Lin & Pascal Bercher

College of Engineering & Computer Science, The Australian National University

{firstName.lastName@anu.edu.au}

Introduction

Objective: The objective of this paper is to study the expressiveness of various hierarchical and non-hierarchical planning formalisms in conjunction with Linear Temporal Logic (LTL).

Method: The approach we consider for this purpose is viewing the solution set of a planning problem as a formal language and compare it with other formal ones.

LTL and Finite LTL

LTL: The syntax of an LTL formula φ is defined as follows:

$$\varphi = \top \mid p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \operatorname{U} \varphi_2$$

The semantics of LTL is defined in terms of a state sequence of infinite length: $\pi = \langle s_1 \ s_2 \cdots \rangle$. We denote $\pi \llbracket i \rrbracket = \langle s_i \cdots \rangle$.

- $\pi[i] \models \top$
- $\pi[i] \models \neg \varphi \text{ iff } \pi[i] \nvDash \varphi$ $\pi[i] \models \bigcirc \varphi \text{ iff } \pi[i+1] \models \varphi$
- $\pi[i] \models \varphi_1 \land \varphi_2$ iff $\pi[i] \models \varphi_1 \land \pi[i] \models \varphi_2$
- $\pi[i] \models \varphi_1 \cup \varphi_2$ iff there exists a $j \ge i$ such that $\pi[j] \models \varphi_2$ and $\pi[k] \models \varphi_1 \text{ for all } i \le k \le j.$

• $\pi[i] \models p \text{ iff } p \in s_i$

Finite LTL: The syntax of f-LTL is identical to that of LTL, but the semantics is defined in terms of a finite state sequence $\pi = \langle s_1 \cdots s_n \rangle$:

- $\pi[i] \models \top$ • $\pi[i] \models p \text{ iff } p \in s_i$
- $\pi[i] \models \neg \varphi \text{ iff } \pi[i] \nvDash \varphi$
- $\pi_i \models \bigcirc \varphi \text{ iff } i < n \text{ and } \pi_{i+1} \models \varphi$
- $\pi[i] \models \varphi_1 \land \varphi_2$ iff $\pi[i] \models \varphi_1 \land \pi[i] \models \varphi_2$
- $\pi_i \vDash \varphi_1 \mathbb{U} \varphi_2$ iff there exists a j with $i \le j \le n$ such that $\pi_i \vDash \varphi_2$, and for each $i \leq k < j, \pi_k \models \varphi_1$

One crucial power of f-LTL is to express the end of a state sequence, written \odot , in terms of the operator \bigcirc :

$$\odot = \bigcirc (\neg \top)$$

More concretely, we have that $\pi \llbracket i \rrbracket \vDash \odot$ iff i = n.

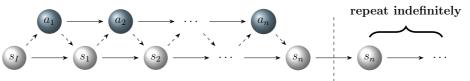
Non-hierarchical Planning Formalism

A STRIPS planning problem \mathcal{P} is a tuple $\mathcal{P} = (\mathcal{F}, \mathcal{A}, \delta, s_I, q)$:

- \mathcal{F} : A set of propositions • \mathcal{A} : A set of actions
- s_I : $s_I \in 2^{\mathcal{F}}$ • $q: q \subset \mathcal{F}$

•
$$\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}} - \delta(a) = (prec(a), eff^+(a), eff^-(a))$$

A solution to \mathcal{P} is an action sequence $\overline{a} = \langle a_1 \cdots a_n \rangle$ which results in a state sequence $\pi = \langle s_0 \cdots s_n \rangle$ such that $s_0 = s_I, g \subseteq s_n$, and for each $1 \leq i \leq n$, $prec(a_i) \subseteq s_i$ and $s_i = (s_{i-1} \setminus eff^-(a_i)) \cup eff^+(a_i)$.



A STRIPS-L or a STRIPS-FL planning problem P is a tuple P = $(\mathcal{F}, \mathcal{A}, \delta, s_I, q)$ where q is respectively an LTL or an f-LTL formula.

A solution to a STRIPS-L or a STRIPS-FL problem is an action sequence \overline{a} which results in a state sequence π with $\pi \llbracket 0 \rrbracket \vDash q$.

Remark: For a *STRIPS-L* problem, since the semantics of LTL is defined over an infinite state sequence, we have to **artificially** extend π to infinite by repeating its last state indefinitely (see the figure).

Hierarchical Planning Formalism

An \mathcal{HTN} planning problem is $\mathcal{P} = ((\mathcal{F}, \mathcal{A}, \mathcal{C}, \mathcal{M}, \delta), c_I, g)$ where \mathcal{C} is a set of compound tasks, and \mathcal{M} is a set of methods.

> A compound task is decomposed into a partial order set of actions and compound tasks called task network by a method. A solution is a task network consisting solely of actions which is

obtained from the initial compound task and has an executable linearisation resulting in a state sequence π satisfying q.

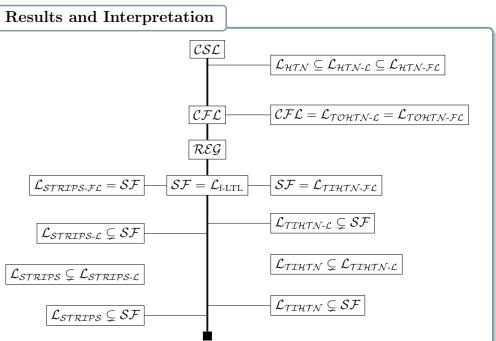
We can incorporate LTL and f-LTL into HTN planning formalism by replacing q with a respective LTL or f-LTL formula.

The language of a **non-hierarchical** planning problem \mathcal{P} :

The language of a **hierarchical** planning problem \mathcal{P} :

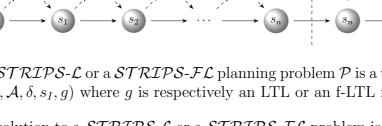
$$\mathcal{L}(\mathcal{P}) = \left\{ c \right\}$$

$$\mathcal{L}_X = \{\mathcal{L}(\mathcal{P})\}$$



• Incorporating LTL and f-LTL into TIHTN also increases its expressiveness. In particular:

- Incorporating LTL and f-LTL into \mathcal{TOHTN} (total order \mathcal{HTN} planning) does **not** increase its expressiveness. They are all equivalent to context-free languages (CFL):



Languages of Planning Problems

 $\mathcal{L}(\mathcal{P}) = \{ \omega \mid \omega \text{ is a solution to } \mathcal{P} \}$

- $\begin{cases} \pi \mid \pi \text{ is an executable linearization of } tn, \\ tn \text{ is a solution to } \mathcal{P} \end{cases}$
- The class of languages of a (hierarchical or non-hierarchical) planning formalism X, e.g., X = STRIPS-FL:
 - \mathcal{P}) | \mathcal{P} is a planning problem in the formalism X}

• Incorporating LTL and f-LTL into the *STRIPS* formalism in**creases** its expressiveness. In particular:

- $\mathcal{L}_{STRIPS} \subsetneq \mathcal{L}_{STRIPS-L} \subsetneq \mathcal{L}_{STRIPS-FL} = SF \subsetneq \mathcal{REG}$
- where \mathcal{SF} and \mathcal{REG} refer to the star-free languages and regular languages, respectively.

 $\mathcal{L}_{\mathcal{T}\mathcal{T}\mathcal{H}\mathcal{T}\mathcal{N}} \subset \mathcal{L}_{\mathcal{T}\mathcal{T}\mathcal{H}\mathcal{T}\mathcal{N}\mathcal{-}\mathcal{L}} \subset \mathcal{L}_{\mathcal{T}\mathcal{T}\mathcal{H}\mathcal{T}\mathcal{N}\mathcal{-}\mathcal{F}\mathcal{L}} = \mathcal{SF}$

where TIHTN refers to HTN planning with task insertions.

 $\mathcal{L}_{\mathcal{TOHTN}} = \mathcal{L}_{\mathcal{TOHTN-L}} = \mathcal{L}_{\mathcal{TOHTN-FL}} = \mathcal{CFL}$

• All formalisms are below context-sensitive languages (CSL):

 $\mathcal{L}_{\mathcal{HTN}} \subset \mathcal{L}_{\mathcal{HTN-L}} \subset \mathcal{L}_{\mathcal{HTN-FL}} \subset \mathcal{CSL}$