On the Expressive Power of Planning Formalisms in Conjunction with LTL

Songtuan Lin Pascal Bercher

School of Computing College of Engineering & Computer Science The Australian National University

June 3, 2022

Australian National University

Introduction \bullet 000		
Motivation		

We want to study the expressiveness of both hierarchical and non-hierarchical planning frameworks in conjunction with Linear Temporal Logic (LTL) in order to know:

- Whether LTL can *actually* improve the expressive power of a planning framework
- What is the upper bound of the expressiveness of a planning framework when combining with LTL
- Which problem class can be modeled by a certain planning framework with LTL

Introduction $0 \bullet 00$		
Approach		

- Expressiveness The class of *formal languages* that can be expressed
- For the purpose of studying the expressiveness of a planning framework incorporating LTL
 - We view the solution set of a planning problem in the target formalism as a formal language
 - We compare the language of a planning problem with other languages

Classical Planning 00000

LTL

• The syntax of LTL:

$$\varphi = \top \mid p \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \, \mathrm{U} \, \varphi_2$$

- The semantics of LTL: Given a state sequence $\pi = \langle s_1 \cdots \rangle$, we define $\pi \llbracket i \rrbracket = \langle s_i \cdots \rangle$
 - $\pi[[i]] \vDash \top$ $\pi[[i]] \vDash p \text{ iff } p \in s_i$
 - $\pi[\![i]\!] \vDash \neg \varphi \ i\!f\!f \,\pi[\![i]\!] \nvDash \varphi$ $\pi[\![i]\!] \vDash \bigcirc \varphi \ i\!f\!f \,\pi[\![i+1]\!] \vDash \varphi$
 - $\pi[\![i]\!] \vDash \varphi_1 \land \varphi_2 \text{ iff } \pi[\![i]\!] \vDash \varphi_1 \land \pi[\![i]\!] \vDash \varphi_2$
 - $\pi[\![i]\!] \vDash \varphi_1 \ U \ \varphi_2 \ iff there exists a \ j \ge i \ such that \ \pi[\![j]\!] \vDash \varphi_2 \ and \ \pi[\![k]\!] \vDash \varphi_1 \ for \ all \ i \le k < j.$
- The semantics is defined over an *infinite* state sequence

- The syntax of f-LTL is identical to that of standard LTL
- The semantics of f-LTL is defined over a state sequence $\pi = \langle s_1 \cdots s_n \rangle$ of *finite* length
 - $\pi_i \vDash \bigcirc \varphi$ iff i < n and $\pi_{i+1} \vDash \varphi$
 - $\pi_i \vDash \varphi_1 \cup \varphi_2$ iff there exists a j with $i \le j \le n$ such that $\pi_j \vDash \varphi_2$, and for each $i \le k < j$, $\pi_k \vDash \varphi_1$
- f-LTL can express the end of a state sequence \odot :

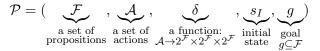
$$\odot = \bigcirc (\neg \top)$$

i.e., $\pi[\![i]\!] \vDash \odot iff i = n \ (s_i \text{ is the last in } \pi)$

Hierarchical Planning 0000000

Expressiveness of Classical Planning Framework with LTL

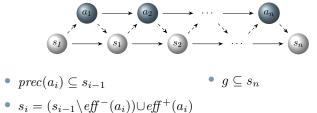
• A STRIPS planning problem P is a tuple:



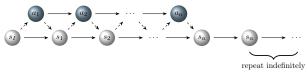
 δ maps each action to its precondition, positive effects, and negative effects so that we can view each action as a symbol:

$$\delta(a) = (prec(a), eff^+(a), eff^-(a))$$

• A solution is an action sequence $\overline{a} = \langle a_1 \cdots a_n \rangle$ such that



• A STRIPS-L planning problem is like a STRIPS planning problem except that g is an LTL formula



- A solution is an action sequence $\overline{a} = \langle a_1 \cdots a_n \rangle$ such that $\tilde{\pi} = \langle s_I \ s_1 \cdots s_n \ s_n \cdots \rangle \models g$ where $\pi = \langle s_I \ s_1 \cdots s_n \rangle$ is obtained by applying \overline{a} in s_I
- **Note** that although the state sequence is extended to infinite, the solution is still **finite**
- A STRIPS-FL planning problem is like a STRIPS planning problem except that g is an f-LTL formula
 - A solution is an action sequence \overline{a} which leads to a state sequence π satisfying g
 - Note that π does *not* need to be extended to infinite

Languages of Planning Problems/Formalisms

• The language of a planning problem \mathcal{P} in \mathcal{STRIPS} , $\mathcal{STRIPS-L}$, or $\mathcal{STRIPS-FL}$ formalism:

 $\mathcal{L}(\mathcal{P}) = \{ \overline{a} \mid \overline{a} \text{ is a solution to } \mathcal{P} \}$

• The class of languages of a planning formalism X with X being STRIPS, STRIPS-L, or STRIPS-FL:

 $\mathcal{L}_X = \{ \mathcal{L}(\mathcal{P}) \mid \mathcal{P} \text{ is a planning problem in the formalism } X \}$

	Classical Planning 0000●	
Theoretical Results		

 $\mathcal{L}_{STRIPS} \subsetneq \mathcal{L}_{STRIPS-\mathcal{L}} \subsetneq \mathcal{L}_{STRIPS-\mathcal{FL}} = S\mathcal{F} \subsetneq \mathcal{REG}$ where $S\mathcal{F}$ refers to the class of star-free languages, which is a strict subset of regular languages (\mathcal{REG})

Proof Ideas

- The star-free language $\{\langle a \ a \rangle\}$ cannot be expressed by the STRIPS or STRIPS-L
- $\{\langle a \ a \rangle\}$ can be expressed by the STRIPS-FL formalism

Expressiveness of Hierarchical Planning Framework with LTL

An \mathcal{HTN} planning problem \mathcal{P} is a tuple $(\mathcal{D}, c_I, s_I, g)$ where $\mathcal{D} = (\mathcal{F}, \mathcal{A}, \mathcal{C}, \mathcal{M}, \delta)$ is the domain

 tn_1

 $\rightarrow \bullet \bullet \bullet \bullet \bullet \downarrow g$

- \mathcal{C} is a set of compound tasks
- $\bullet \ \mathcal{M} \ \mathrm{is} \ \mathrm{a} \ \mathrm{set} \ \mathrm{of} \ \mathrm{methods}$
- $c_I \in \mathcal{C}$ is the initial compound task
- A compound task is decomposed into a task network by a method
- A task network is a partial order set of actions and compound tasks
- A solution is a task network *tn* consisting of actions
 - tn is obtained from c_I
 - tn has an executable linearization in s_I
 - g is satisfied

 $s_I \rightarrow \bullet$

\mathcal{TIHTN} – \mathcal{HTN} planning with task insertions

- Actions can be inserted to task networks
- A solution is a task network obtained by decomposition and task insertions
- \mathcal{TOHTN} a special case of \mathcal{HTN} planning
 - Every method is totally ordered
- $(\mathcal{TI})\mathcal{HTN}\text{-}\mathcal{L}/(\mathcal{TI})\mathcal{HTN}\text{-}\mathcal{FL}-\mathrm{Combination}~\mathrm{with}~\mathrm{LTL/f\text{-}LTL}$
 - $\bullet~g$ is expressed in terms of an LTL/f-LTL formula

ntroduction Classical Planning Hierarchical Planning Conclusion 0000 0000 0000 00

Languages of Planning Problems/Formalisms

• The language of a planning problem \mathcal{P} in the formalism $(\mathcal{TI})\mathcal{HTN}, (\mathcal{TI})\mathcal{HTN}\mathcal{-L}, \text{ or } (\mathcal{TI})\mathcal{HTN}\mathcal{-FL}$ is

 $\mathcal{L}(\mathcal{P}) = \left\{ \pi \mid \begin{array}{l} \pi \text{ is an executable linearization of } tn, \\ tn \text{ is a solution to } \mathcal{P} \end{array} \right\}$

• The class of languages of a hierarchical planning formalism X with X being $(\mathcal{TI})\mathcal{HTN}, (\mathcal{TI})\mathcal{HTN-L}$, or $(\mathcal{TI})\mathcal{HTN-FL}$ is

 $\mathcal{L}_X = \{ \mathcal{L}(\mathcal{P}) \mid \mathcal{P} \text{ is a planning problem in the formalism } X \}$

$\mathcal{L}_{\mathcal{TIHTN}} \subsetneq \mathcal{L}_{\mathcal{TIHTN-L}} \subsetneq \mathcal{L}_{\mathcal{TIHTN-FL}} = \mathcal{SF}$

Proof Ideas

• The language of a hierarchical planning problem can be viewed as the intersection of the language of its hierarchical part and that of its non-hierarchical part

 $\mathcal{L}_{\mathcal{TOHTN}} = \mathcal{L}_{\mathcal{TOHTN-L}} = \mathcal{L}_{\mathcal{TOHTN-FL}} = \mathcal{CFL} \text{ where } \mathcal{CFL} \text{ refers to the class of context-free languages}$

Proof Ideas

- The language of the hierarchical part is context-free
- The language of the non-hierarchical part is regular
- The intersection of a context-free language and a regular language is still a context-free language

 $CFL \subsetneq L_{HTN} \subseteq L_{HTN-L} \subseteq L_{HTN-FL} \subseteq CSL$ where CSL refers to the class of context-sensitive languages

Proof Ideas

• The intersection of a context-sensitive language and a regular language is still a context-sensitive language

Hierarchical Planning 0000000

Conclusion

17.18

