
On the Efficient Inference of Preconditions and Effects of Compound Tasks in
Partially Ordered HTN Planning Domains

Conny Olz1 and Pascal Bercher2

1 Ulm University
2 The Australian National University

conny.olz@uni-ulm.de, pascal.bercher@anu.edu.au

Abstract

Recently, preconditions and effects of compound tasks based
on their possible refinements have been introduced together
with an efficient inference procedure to compute a subset of
them. However, they were restricted to total-order HTN plan-
ning domains. In this paper we generalize the definitions and
algorithm to the scenario of partially ordered domains.

Introduction
In Hierarchical Task Network (HTN) planning we refine an
initial abstract task step-by-step into a more fine-grained
description until an executable sequence of actions results
(Erol, Hendler, and Nau 1996; Ghallab, Nau, and Traverso
2004; Bercher, Alford, and Höller 2019).

Compound tasks together with decomposition methods
govern the refinement process. In many HTN formalizations
one does not model or specify concrete preconditions or ef-
fects for compound tasks like for primitive ones. Instead,
they are only given implicitly via the actions deeper down
in the hierarchy. Recently, Olz, Biundo, and Bercher (2021)
defined preconditions and effects of compound tasks that
can be inferred based on the decomposition structure. Be-
sides analyzing the computational complexity they also in-
troduced a procedure to compute a subset of these in poly-
nomial time but they were restricted to totally ordered (t.o.)
HTN planning domains. We extend their work by generaliz-
ing the definitions and algorithm to also work with partially
ordered (p.o.) domains.

As pointed out by Olz, Biundo, and Bercher (2021) the
potential applications of such inferred preconditions and ef-
fects are manifold. In the context of modeling assistance
they might reveal unintended modeling effects or errors and
a study indicated that they can help to better comprehend a
given domain model (Olz et al. 2021). More prominently, re-
semblances of the preconditions and effects considered by us
were already exploited to speed up several kinds of planning
systems (Tsuneto, Hendler, and Nau 1998; Nau et al. 2003;
Clement, Durfee, and Barrett 2007; Waisbrot, Kuter, and
Könik 2008; Goldman and Kuter 2019; Schreiber, Pellier,
and Fiorino 2019; Magnaguagno, Meneguzzi, and de Silva
2021; Schreiber 2021). By extending the inference to p.o.
domains we make them also available for planning sys-
tems solving p.o. problems like SHOP2 (Nau et al. 2003),

FAPE (Dvor̆ák et al. 2014), PANDA3-POCL (Bercher et al.
2017), PANDAπ-SAT (Behnke, Höller, and Biundo 2019),
PANDAπ-pro (Höller et al. 2020), SIADEX (Fernandez-
Olivares, Vellido, and Castillo 2021), pyHiPOP (Lesire and
Albore 2021), and PDDL4J (Pellier and Fiorino 2021). Their
exploitation in p.o. systems should however be done with
care as discussed later in the paper.

One further utilization especially for the p.o. case that we
would like to bring up is that inferred preconditions and ef-
fects bear useful information for turning a p.o. domain or
problem into t.o. while preserving specific properties. Plan-
ners can then make use of the special case to solve such
problems more efficiently.

For an overview of related work concerning the inference
of preconditions and effects we would like to refer to Olz,
Biundo, and Bercher and add the work by Magnaguagno,
Meneguzzi, and de Silva (2021) that has been published in
the meantime. Their lifted planner HyperTensioN infers pre-
conditions of compound tasks similarly to Olz, Biundo, and
Bercher but is also restricted to t.o. domains.

HTN Planning Formalism
Our formalism is based on the one by (Bercher, Alford, and
Höller 2019). A partially ordered (p.o.) HTN planning do-
main is a tuple D = (F,A,C,M), where F is a finite set of
facts,A are primitive tasks, andC the set of compound tasks.
Primitive tasks a = (prec, add , del) ∈ A – also called ac-
tions – are described by their preconditions prec(a) ⊆ F
and their add and delete effects add(a), del(a) ⊆ F , resp.
As in STRIPS planning, an action a ∈ A is applicable
in a state s ∈ 2F if prec(a) ⊆ s. The application of it
in s (if applicable) produces the successor state δ(s, a) =
(s \ del(a)) ∪ add(a). Accordingly, the application of a se-
quences of actions ā = 〈a0 . . . an〉 with ai ∈ A is possible
in a state s0 if a0 is applicable in s0 and for all 1 ≤ i ≤ n, ai
is applicable in si = δ(si−1, ai−1). The second type of tasks
are compound tasks, which serve as a collection of primitive
and/or compound tasks organized in task networks. A task
network is a triple tn = (T ,≺, α), where T is a (possibly
empty) set of identifiers (ids) that are mapped to tasks by a
function α : T → A ∪ C. Therefore, a single task can be
contained in a task network more than once. A set of order-
ing constraints ≺ : T × T defines a partial order on the
identifiers. Decomposition methods M specify how exactly



compound tasks were decomposed. A method m ∈ M is a
pair (c, tn) of a compound task c ∈ C and a task network. It
decomposes a task network tn1 = (T1,≺1, α1) into a task
network tn2 = (T2,≺2, α2) if t ∈ T1 with α1(t) = c and
there is a task network tn ′ = (T ′,≺′, α′) equal to tn but
using different ids, so T1 ∩T ′ = ∅. The task network tn2 is
defined as

tn2 = ((T1 \ {t}) ∪ T ′,≺′ ∪ ≺D, (α1 \ {t 7→ c}) ∪ α′)
≺D ={(t1, t2) | (t1, t) ∈ ≺1, t2 ∈ T ′} ∪

{(t1, t2) | (t, t2) ∈ ≺1, t1 ∈ T ′} ∪
{(t1, t2) | (t1, t2) ∈ ≺1, t1 6= t ∧ t2 6= t}

So if a compound task c is decomposed, it is removed from
the task network and the tasks of the chosen method’s sub-
network were added together with ordering constraints that
hold for c. When a task network tn can be decomposed into
a task network tn ′ by applying the method m to a task with
the identifier t, we write tn →t,m tn ′; if it is possible using
several methods in sequence, we write tn → tn ′.

An HTN planning problem Π = (D, sI , tnI , g) contains
additionally an initial state sI ∈ 2F , an initial task network
tnI , and a goal description g ⊆ F . A solution to a Π is a
task network tn = (T ,≺, α) if and only if
1. it can be reached via decomposing tnI (i.e. tnI → tn),
2. all task are primitive (∀t ∈ T : α(t) ∈ A), and
3. there exists a sequence 〈t1t2 . . . tn〉 of the task identi-

fiers in T that is in line with ≺, and the application of
〈α(t1)α(t2) . . . α(tn)〉 in s0 results in a goal state s ⊇ g.

To ease notation we additionally define the following: A
task network containing only one task c ∈ A ∪ C, i.e.,
({t}, ∅, α(t) = c), is denoted 〈c〉. A t.o. refinement of some
compound task c ∈ C is a sequence of primitive tasks
ā = 〈a1 . . . an〉 if and only if there exists a task network
tn = (T ,≺, α), 〈c〉 → tn and there exists a sequence
〈t1 . . . tn〉 of the ids in T that is in line with ≺ so that
〈α(t1) = a1 . . . α(tn) = an〉. Lastly, by c ∈ tn for some
task c ∈ A ∪ C and task network tn = (T ,≺, α) we abbre-
viate that there exists a task identifier t ∈ T so that α(t) = c.

Preconditions and Effects of Compound Tasks
The definitions of preconditions and effects of compound
tasks for totally ordered task networks by Olz, Biundo, and
Bercher (2021) were based on sets of states that enable the
execution of such tasks and the states in which an application
of a refinement can result. We adapt these two definitions to
p.o. domains in the following. Therefore, consider a domain
D = (F,A,C,M) and a compound task c ∈ C.

The set of executability-enabling states of c is

E(c) = {s ∈ 2F | ∃ t.o. refinement of c applicable in s}.

The set of resulting states of c w.r.t. some state s ∈ 2F is

Rs(c) = {s′ ∈ 2F | ∃ t.o. refinement appl. in s res. in s′}.

Based on these two updated definitions for p.o. domains,
the definitions of preconditions and effects of compound
tasks can be used without further adaptions. Olz, Biundo,

and Bercher (2021) defined several types, e.g., depending
on whether they are dependent or independent of a state and
they differentiate between effects and postconditions. We re-
peat only those that are relevant for this paper.

State-independent positive and negative effects (cf. their
Def. 4) of a compound task c are facts that are added or
deleted, resp., by the successful execution of a refinement of
c, independent of the state in which the task is executed, i.e.,

eff +
∗ (c) := (

⋂
s∈E(c)

⋂
s′∈Rs(c)

s′) \
⋂

s∈E(c)

s

eff −∗ (c) :=
⋂

s∈E(c)

(F \
⋃

s′∈Rs(c)

s′)

if E(c) 6= ∅, otherwise eff +/−
∗ (c) := undef .

Possible state-independent effects (cf. Def. 5) of a com-
pound task c are not guaranteed to hold (or not hold, resp.,)
after every refinement of c but after at least one:

poss-eff +
∗ (c) :=

⋃
s∈E(c)

(
⋃

s′∈Rs(c)

s′ \ s)

poss-eff −∗ (c) :=
⋃

s∈E(c)

((
⋃

s′∈Rs(c)

(F \ s′)) ∩ s)

if E(c) 6= ∅ and poss-eff +/−
∗ (c) := undef otherwise.

Mandatory preconditions (cf. Def. 6) of c are facts that
hold in every state for which there exists an executable re-
finement. So, they are required in every state in which a re-
finement of c shall be executed: prec(c) :=

⋂
s∈E(c) s if

E(c) 6= ∅ and prec(c) := undef otherwise.
Important: These definitions for p.o. domains are actually

not correct in the sense that in a given p.o. problem we do
not consider c on its own but rather within a task network
that usually contains further tasks unordered w.r.t. c. Those
(or their subtasks) can interlock with the subtasks of c to en-
able the execution of some refinement. So the executability-
enabling or resulting states of c (leaving open how exactly
they are defined in such cases) can look totally different de-
pending on which other tasks are present in a task network.

We introduced these definitions solely to define a weaker
version that can be computed in polynomial time as also
done by Olz, Biundo, and Bercher (2021) in the t.o. case.
They showed that determining the preconditions and effects
in a t.o. domain is computationally as hard as solving the
respective planning problem, basically because one needs to
check whether there is at least one executable refinement1.
For practical exploitation this can often be too costly. There-
fore, a relaxation has been introduced, which allows to find
a subset of the original preconditions and effects efficiently.
It is done by ignoring the primitive tasks preconditions as
then only the tasks’ ordering relation and occurrences need

1Note that not all complexity results can be transferred directly
to p.o. domains because some proofs exploit the fact that only de-
terministic complexity classes C were considered, where it holds
C = coC. This is not the case for all p.o. domains since, e.g., the
plan existence problem for acyclic p.o. problems is NEXPTIME-
complete (Alford, Bercher, and Aha 2015).



to be considered. So, the precondition-relaxation of a do-
main D = (F,A,C,M) is the domain D′ = (F,A′, C,M)
with A′ = {(∅, add , del) | (prec, add , del) ∈ A}.
Then, the precondition-relaxed effects eff ∅+∗ (c), eff ∅−∗ (c),
poss-eff ∅+∗ (c) and poss-eff ∅−∗ (c) (cf. Def. 9) are defined
just like the original ones but based on the precondition-
relaxed variant of D.

Analogue preconditions were defined slightly differently
as removing them completely does not yield the expected
result. A fact f ∈ F is an executability-relaxed precondi-
tion of c if and only if for all t.o. refinements (ignoring ex-
ecutability) 〈a0 . . . an〉 of c there exists an action ai with
f ∈ prec(ai) and there does not exist an action aj with
j < i and f ∈ add(aj), where i, j ∈ {0 . . . n} (cf. Def. 10).

The exploitation of the relaxed preconditions and effects
is possible because they possess subset properties with re-
gard to the actual ones so that they do not contain false
candidates. However, one needs to pay attention to several
small details: The sets post+∗ (c) =

⋂
s∈E(c)

⋂
s′∈Rs(c)

s′ ⊆
eff +
∗ (c) ∪ prec(c), post+∗ (c) = eff −∗ (c) are called state-

independent postconditions (cf. Def. 5 by Olz, Biundo, and
Bercher (2021)), which (in the case of positive ones) addi-
tionally contain facts that hold after the execution of every
refinement but were not added explicitly. For t.o. domains
it was shown that prec∅(c) ⊆ prec(c) and eff ∅+/−∗ (c) ⊆
post

+/−
∗ (c) if E(c) 6= ∅ (Olz, Biundo, and Bercher 2021).

We would like to make two remarks on this. First, the
precondition-relaxed effects can contain facts, which are
also preconditions and therefore can be rather interpreted
as postconditions than effects. As an example, consider a
compound task c with only one method (c, 〈({f}, {f}, ∅)〉).
Here f is contained in eff ∅+∗ (c) but it is also needed to ex-
ecute c. We still decided to call the sets eff ∅+/−∗ (c) effects
instead of postconditions since the definition is based on the
actions’ effects and getting also postconditions is more a
byproduct than intention. Moreover, not all postconditions
are captured by the sets eff ∅+/−∗ (c). So, the definitions im-
ply some counter-intuitive phenomena concerning postcon-
ditions and effects, however, we did not come up with a
perfect solution that fixes every interpretation issue. Thus,
one should consider carefully which properties are needed
for the exploitation at hand and pick the right version ac-
cordingly. Second, if c does not have an executable refine-
ment then eff +/−

∗ (c) = prec∅(c) = undef but the re-
laxed versions may contain facts. This can be seen, e.g.,
if c has only one method containing only the two actions
(∅, ∅, {f1}) and ({f1}, {f2}, ∅), which are ordered as given.
Here, eff ∅+∗ (c) = {f2} but this sequence of tasks is never
executable2. It is a direct consequence of reducing the rea-
soning complexity from EXPTIME (arb. t.o. domain) to P.

In the p.o. case one needs to keep in mind one more point
when it comes to exploitation: As pointed out earlier there
might be other tasks in a task network that can or even must
be interleaved with the subtasks of c, which potentially add

2We thank the anonymous reviewer for providing the two ex-
amples.

Algorithm 1: Calculates the precondition-relaxed effects for
all compound tasks
Input: D = (F,A,C,M), an HTN planning domain.
Output: The sets of precondition-relaxed effects of all com-
pound tasks

1: poss-eff ∅+∗ (c) = poss-eff ∅−∗ (c) = eff ∅+∗ (c) =

eff ∅−∗ (c) = ∅ for all c ∈ C
2: for all f ∈ F do
3: D′ = RESTRICTTOEFFECTS(D, f )
4: Cε = COMPUTEEMPTYREFINEMENTS(D′)
5: D′′ = SHORTENMETHODSFROMRIGHT(D′, Cε)
6: MR = DECOMPOSITIONREACHABILITY(D′′)
7: for all c ∈ C do
8: if ∃ (c′, tn) ∈MR(c) ∧ a ∈ tn : f ∈ add(a) then
9: poss-eff ∅+∗ (c) = poss-eff ∅+∗ (c) ∪ {f}

10: if ∃ (c′, tn) ∈MR(c) ∧ a ∈ tn : f ∈ del(a) then
11: poss-eff ∅−∗ (c) = poss-eff ∅−∗ (c) ∪ {f}
12: if c /∈ Cε then
13: if f ∈ poss-eff ∅+∗ (c)∧ f /∈ poss-eff ∅−∗ (c) then
14: eff ∅+∗ (c) = eff ∅+∗ (c) ∪ {f}
15: if f /∈ poss-eff ∅+∗ (c)∧ f ∈ poss-eff ∅−∗ (c) then
16: eff ∅−∗ (c) = eff ∅−∗ (c) ∪ {f}
17: return poss-eff ∅+∗ (c), poss-eff ∅−∗ (c), eff ∅+∗ (c),

eff ∅−∗ (c) for all c ∈ C

or delete the alleged preconditions or effects of c. So the sets
eff ∅+/−∗ (c) and prec∅(c) can only be considered as precon-
ditions and effects of c if no other tasks are ordered within
the refinement of c.

Inference Algorithms
The proofs of Theorems 6 (on the poly-time decidability of
possible effects) and Corollary 7 (guaranteed effects) as well
as of Theorem 7 (on the poly-time decidability of precondi-
tions) by Olz, Biundo, and Bercher (2021) essentially de-
scribe procedures to infer precondition-relaxed effects and
executability-relaxed preconditions in t.o. domains in poly-
nomial time. We now generalize these procedures so that
they can also handle partially ordered task networks and
present corresponding pseudo code.

Algorithm 1 is the main procedure to compute
precondition-relaxed effects based on the textual descrip-
tion in the proof of Theorem 7 by Olz, Biundo, and
Bercher (2021). The major modifications for p.o. domains
affect solely subroutine SHORTENMETHODSFROMRIGHT.
We consider one fact f ∈ F after another and curtail the do-
main according to several subroutines, listed in Algorithm 2.

• We keep only primitive actions that add or delete f
as all others are irrelevant. Therefore, the function RE-
STRICTTOEFFECTS(D, f ) that takes as input a domain
D = (F,A,C,M) and a fact f ∈ F and outputs the do-
main D′ = ({f}, A′, C,M ′), where A′ = {(prec(a) ∩
{f}, add(a)∩ {f}, del(a)∩ {f}) | a ∈ A} \ {(∅, ∅, ∅)}
and M ′ is obtained from M by restricting the task net-



Algorithm 2: Auxiliary Functions

1: . Returns Cε ⊆ C, the set of compound tasks admit-
ting an empty refinement. /

2: function EMPTYREFINEMENTS(D = (F,A,C,M))
3: Cε = ∅; M ′ = M ; setChanged = true
4: for all m = (c, tn = (T ,≺, α)) ∈M do
5: if T = ∅ and c /∈ Cε then
6: Cε = Cε ∪ {c}
7: M ′ = M ′ \ {m}
8: if ∃ t ∈ T : α(t) ∈ A then
9: M ′ = M ′ \ {m}

10: while setChanged do
11: setChanged = false
12: for all m = (c, tn = (T ,≺, α)) ∈M ′ do
13: if c /∈ Cε and ∀t ∈ T : α(t) ∈ Cε then
14: Cε = Cε ∪ {c}
15: M ′ = M ′ \ {m}
16: setChanged = true
17: return Cε

18: . Returns an updated domain, where only the right-
most relevant tasks remain in all methods. /

19: function SHORTENMETHODSFROMRIGHT(D, Cε)
20: we assume that ≺ is minimal
21: let ≺+ be the transitive closure of ≺
22: M ′ = ∅
23: for all m = (c, tn = (T ,≺, α)) ∈M do
24: Trem = Tcheck = {t ∈ T | @ t′ : (t, t′) ∈ ≺}
25: while Tcheck 6= ∅ do
26: select arbitrary t ∈ Tcheck

27: Tcheck = Tcheck \ {t}
28: if α(t) ∈ Cε then
29: T ′ = {t′ ∈ T | (t′, t) ∈ ≺ ∧ @ t̃ ∈ Trem :

α(t̃) /∈ Cε ∧ (t′, t̃) ∈ ≺+}
30: Tcheck = Tcheck ∪ (T ′ \ (Trem ∩ T ′))
31: Trem = Trem ∪ (T ′ \ (Trem ∩ T ′))
32: ≺′ = {(t1, t2) ∈ ≺ | t1 ∈ Trem ∧ t2 ∈ Trem}
33: M ′ = M ′ ∪ {(c, (Trem ,≺′, α|Trem ))}
34: return D′ = (F,A,C,M ′)

works to tasks from A′ ∪ C instead of A ∪ C.
• The function EMPTYREFINEMENTS(D′) is called on the

restricted domain that computes the set of compound
tasks admitting an empty refinement, Cε ⊆ C, i.e. they
can be decomposed to an empty task network. If a com-
pound task c can be refined into an empty task network,
we know that f can only be a possible but not a manda-
tory (positive or negative) precondition-relaxed effect.

• Moreover, if the last/right-most task in a task network is
primitive or does not admit an empty refinement then this
task determines whether the fact gets added or deleted.
In a partially ordered task network there are poten-
tially several tasks that can be executed lastly. Therefore,
the function SHORTENMETHODSFROMRIGHT(D′, Cε)
identifies all these tasks for all decomposition methods
and removes tasks that are ordered in front of them. In a
t.o. task network we have a clear order of tasks and can go

from right to left, stopping as soon as we encounter a task
(primitive or compound) that does not admit an empty
refinement. In our p.o. setting we consider initially all
task that do not have a successor. If some of them admit
an empty refinement we also consider their predecessors
except of those that also precede another already selected
task. The same applies for them until we reach a fix point.

• DECOMPOSITIONREACHABILITY(D) computes for all
tasks c ∈ C the set of methods that are still reachable
via decomposition from c in the restricted domain.

Finally, the effects are determined task by task by ana-
lyzing all methods that are still reachable via decomposition
from that task as described from line 7 to 16: If there is a
reachable method containing an action a adding f then f is
a possible positive precondition-relaxed effect because then
there is a refinement of c containing a such that no other ac-
tion adds or deletes f afterwards according to Olz, Biundo,
and Bercher (2021). We can further conclude that f is even
a guaranteed positive precondition-relaxed effect if it is a
possible positive effect but not a possible negative one and
c can not be refined into an empty refinement. The case for
negative effects follows analogously.

To sum up, we can infer precondition-relaxed effects for
compound tasks in p.o. domains like in t.o. domains with the
difference in how to determine the relevant tasks that can be
executed at the end. We found them after performing sub-
routine SHORTENMETHODSFROMRIGHT. Instead of com-
puting and analyzing the set of reachable methods we could
also perform some fix-point algorithm to propagate the ef-
fects up the hierarchy, i.e., we could annotate to each com-
pound tasks whether f is added or deleted in its methods
based on the primitive tasks (still for D′′). Afterwards we
could do this again by taking also the annotated compound
tasks into account. This can be repeated until there are no
further annotations.

Proposition 1. Algorithm 1 is sound and complete, i.e., it
computes all and only precondition-relaxed effects of a com-
pound task c given a domain D = (F,A,C,M) and c ∈ C.

Proof. The proof by Olz, Biundo, and Bercher (2021) is
based on the argument that by curtailing the domain as de-
scribed we find and keep only those tasks in the task net-
works that can be at the last position adding or deleting a
fact f in a linearization of the task network and also in a
primitive refinement of c if they are still reachable through
the hierarchy. We follow this idea but mainly concentrate on
the modified part.

Primitive tasks that neither add nor delete f can be ne-
glected so we remove them to ease notation and reasoning.
The set Cε then contains all compound tasks that can be de-
composed into a refinement in which no action affects f .
Now we want to determine the tasks (primitive and com-
pound) that can be ordered at the last position in a lineariza-
tion of a refinement of a task network as they determine
whether f is a positive or negative effect, which is done in
SHORTENMETHODSFROMRIGHT. If a compound task in a
task network admits an empty refinement, then also its pre-
decessors need to be considered. Consider some method’s



task network (c, tn = (T ,≺, α)) and a task that remained,
i.e. some t ∈ Trem . Either t has no successor tasks then it
can clearly be ordered last or all (transitive) successors ad-
mit an empty refinement since otherwise the latter condition
in line 29 would be violated. So if all those tasks were de-
composed into an empty task network then t is again the last
task. Therefore, for all other tasks t′ ∈ T \Trem it holds that
they have primitive or compound successors that can not be
refined into empty task networks, i.e., there is always a suc-
ceeding relevant primitive task, which makes t′ irrelevant so
that we delete it. Note that if t′ is compound we thereby
also cut off its subtasks. After ensuring this property for all
methods we only need to check, which primitive tasks can
be reached from c via decomposition as all of them can be
inductively ordered last in some t.o. refinement.

The procedure by Olz, Biundo, and Bercher (2021) re-
stricted t.o. domains runs in polynomial time. As we only
adapted SHORTENMETHODSFROMRIGHT(D′, Cε), which
is still polynomial, we can conclude that our modified al-
gorithms still has polynomial runtime.

The algorithm to compute executability-relaxed precon-
ditions follows basically the same idea with small adap-
tions, which is why we do not include its pseudo code as
well. Instead of the function RESTRICTTOEFFECTS(D, f )
we now keep primitive tasks that contain f in their precon-
dition or add effect list. Instead of SHORTENMETHODS-
FROMRIGHT(D′, Cε), we now shorten from left to right.
Then, f is an executability-relaxed precondition of c if there
does not exist a reachable method containing an action that
adds f and c does not admit an empty refinement in the do-
main restricted just to actions that require f as precondition.

Conclusion
We defined preconditions and effects of compound tasks in
p.o. domains and extended an existing inference algorithm
for t.o. task networks operating in polynomial time to p.o.
domains. This opens up the possibility to exploit such in-
formation for planning systems solving p.o. HTN planning
problems as well as for modeling assistance or the lineariza-
tion of partially ordered domains.

References
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning. In ICAPS, 7–15. AAAI Press.
Behnke, G.; Höller, D.; and Biundo, S. 2019. Bringing Or-
der to Chaos – A Compact Representation of Partial Order
in SAT-based HTN Planning. In AAAI, 7520–7529. AAAI
Press.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning – One Abstract Idea, Many Concrete
Realizations. In IJCAI, 6267–6275. IJCAI.
Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017. An
Admissible HTN Planning Heuristic. In IJCAI, 480–488.
IJCAI.
Clement, B. J.; Durfee, E. H.; and Barrett, A. C. 2007. Ab-
stract Reasoning for Planning and Coordination. Journal of
Artificial Intelligence Research (JAIR), 28: 453–515.

Dvor̆ák, F.; Barták, R.; Bit-Monnot, A.; Ingrand, F.; and
Ghallab, M. 2014. Planning and Acting with Temporal and
Hierarchical Decomposition Models. In ICTAI, 115–121.
IEEE.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complexity
results for HTN planning. Annals of Mathematics and AI
(AMAI), 18(1): 69–93.
Fernandez-Olivares, J.; Vellido, I.; and Castillo, L. 2021.
Addressing HTN Planning with Blind Depth First Search.
In 10th International Planning Competition: Planner and
Domain Abstracts (IPC 2020), 1–4.
Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning: Theory and Practice. Morgan Kaufmann.
Goldman, R. P.; and Kuter, U. 2019. Hierarchical Task Net-
work Planning in Common Lisp: the case of SHOP3. In
Proc. of the 12th European Lisp Symposium (ELS 2019), 73–
80. ACM.
Höller, D.; Bercher, P.; Behnke, G.; and Biundo, S. 2020.
HTN Planning as Heuristic Progression Search. JAIR, 67:
835–880.
Lesire, C.; and Albore, A. 2021. pyHiPOP – Hierarchical
Partial-Order Planner. In 10th International Planning Com-
petition: Planner and Domain Abstracts (IPC 2020), 13–16.
Magnaguagno, M. C.; Meneguzzi, F. R.; and de Silva, L.
2021. HyperTensioN: A three-stage compiler for planning.
In 10th International Planning Competition: Planner and
Domain Abstracts (IPC 2020), 5–8.
Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, J. W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN Planning
System. JAIR, 20: 379–404.
Olz, C.; Biundo, S.; and Bercher, P. 2021. Revealing Hid-
den Preconditions and Effects of Compound HTN Planning
Tasks – A Complexity Analysis. In AAAI, 11903–11912.
AAAI Press.
Olz, C.; Wierzba, E.; Bercher, P.; and Lindner, F. 2021. To-
wards Improving the Comprehension of HTN Planning Do-
mains by Means of Preconditions and Effects of Compound
Tasks. In Proceedings of the 10th Workshop on Knowledge
Engineering for Planning and Scheduling (KEPS 2021).
Pellier, D.; and Fiorino, H. 2021. Totally and Partially Or-
dered Hierarchical Planners in PDDL4J Library. In 10th
International Planning Competition: Planner and Domain
Abstracts (IPC 2020), 17–18.
Schreiber, D. 2021. Lilotane: A Lifted SAT-Based Approach
to Hierarchical Planning. JAIR, 70: 1117–1181.
Schreiber, D.; Pellier, D.; and Fiorino, H. 2019. Tree-REX:
SAT-Based Tree Explorationfor Efficient and High-Quality
HTN Planning. In ICAPS, 382–390. AAAI Press.
Tsuneto, R.; Hendler, J.; and Nau, D. 1998. Analyzing Ex-
ternal Conditions to Improve the Efficiency of HTN Plan-
ning. In AAAI, 913–920. AAAI Press.
Waisbrot, N.; Kuter, U.; and Könik, T. 2008. Combining
Heuristic Search with Hierarchical Task-Network Planning:
A Preliminary Report. In Proc. of the 21st Int. Florida Ar-
tificial Intelligence Research Society Conference (FLAIRS
2008), 577–578. AAAI Press.


