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Abstract. Solving partially ordered hierarchical planning problems is
more computationally expensive compared to solving totally ordered
ones. Therefore, automatically transforming partially ordered problem
domains into totally ordered ones, such that the totally ordered prob-
lem still retains at least one solution, would be a desired capability as it
would reduce complexity and thus make it easier for planning systems
to solve the problem. This is a complex endeavour, because even creat-
ing all possible linearizations of all methods in the original domain does
not guarantee that solutions are preserved. It also allows the planner
to use algorithms and heuristics specialised for the totally ordered case
to solve the transformed problem. In this paper, we propose an algo-
rithm for converting partially ordered problems into totally ordered ones
and give criterion for when this is possible. We test our techniques on
the partially-ordered track of the bench-mark set of the IPC 2020 and
solve both the linearized and the original partially-ordered problems us-
ing state-of-the-art planning systems. We �nd that in the majority of
problems across a variety of domains, the linearized problem remains
solvable, and can always be solved faster than the without our proposed
pre-processing technique.

Keywords: Partially ordered HTN planning · Hierarchical planning ·

Totally ordered HTN planning

1 Introduction

Hierarchical Task Network (HTN) planning [2] [6] is a hierarchical approach
to planning. Tasks in HTN planning are either primitive, corresponding to an
action that can be taken, or compound. HTN problems have a set of methods
that specify how one might achieve a given compound task, by decomposing it
into a set of sub-tasks. A compound task may even decompose into itself, either
directly via a method, or indirectly via a sequence of method applications. If
decomposition leads to a sequence of primitive tasks executable from the initial
state, then this sequence of actions is a solution to the problem, also known as
a �plan�.

In totally ordered HTN planning, or TOHTN planning, methods specify a
total order on the sub-tasks. In partially ordered HTN planning, or POHTN
planning, methods might only specify a partial order on the sub-tasks.
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Certain kinds of problems might be naturally more suited to being modelled
as a partially ordered problem, for example, the actions �deliver package 1 to city
A� and �deliver package 2 to city B� � these are essentially unrelated goals in a
real transport scenario, and so modelling the problem to require that one task be
completed before the other would be unnecessarily limiting the possible solution
space. In some cases, such over-speci�cation may remove all valid solutions. Thus
many problems might be modelled as POHTN problems. However, for solving

the problem, it is desirable to have additional constraints that reduces the search
space, while still preserving at least some of the actual solutions.

This paper speci�cally presents a method to transform a POHTN problem to
a TOHTN problem in order to reduce the search space. Converting the problem
to a TOHTN problem allows us to exploit the fact that as proven in Erol et al.
[4], TOHTN planning as a class of problems has lower computational complexity,
resulting in lower worst-case solving time. Thus, transforming a POHTN problem
to a TOHTN problem could allow us to solve the problem more quickly and
deploy specialised algorithms and heuristics.

The drawback to this approach is that, due to the greater expressivity of
POHTN planning, there may exist POHTN problems that cannot be solved
when converted to a TOHTN problem. For example, Erol et al. [4] proved that
HTN planning is expressive enough to model undecidable problems, such as the
language intersection problem of two context-free languages. Fortunately, not
every POHTN problem is guaranteed to be undecidable, and so could still be
transformed while preserving at least one solution.

In this paper we present and investigate an algorithm for converting POHTN
problems to TOHTN problems. We prove that when certain criteria are met,
it guarantees that at least one solution will be preserved. Also, we obtain a
new class of decidable problems, namely those that satisfy the above mentioned
criterion. Finally, we show that, even when these criteria are not met, very few
problems are rendered unsolvable by the transformation, and that it greatly
reduces solving time for problems, with gains being bigger for more di�cult
problems.

2 Hierarchical Planning

We �rst introduce classical planning, as hierarchical planning can be considered
an extension of classical planning.

2.1 Planning Problem Formalisation

Classical planning problems are de�ned over a domain D = (F,A), where F is
a �nite set of facts, or propositional state variables. A is a �nite set of actions.
For all a ∈ A, a ∈ 2F × 2F × 2F , which represents the preconditions and add
and delete e�ects of an action. The preconditions, add, and delete e�ects, of
an action a are referred to as pre(a), add(a), and del(a) respectively. An action
a is executable in a state s if its precondition pre holds in s, i.e. pre ⊆ s. If
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executable in s, its result is the successor state s′ = (s\del)∪ add , i.e., variables
in del(a) get removed and variables in add(a) get added.

A classical planning problem is de�ned as P = (D,SI , SG), where D is
the domain of the problem, SI ∈ 2F is the initial state and SG ∈ F is the goal
description. Given a state s ∈ 2F , a fact is known for certain to be either true
or false, i.e. information about the world state is complete at all times (this is
called the closed world assumption).

A solution ā to a problem is any action sequence that is executable in the
initial state SI , and leads to a state s′′ that satis�es all goals, i.e., s′′ ⊇ SG. Any
such state s′′ is called a goal state.

There are many formalisations for hierarchical planning, also known asHTN
planning. The following one borrows heavily from Bercher et al. [2] and Geier
and Bercher [5]. HTN planning has two variants, Partially Ordered Hierarchical
Task Network Planning, also known as POHTN planning, and Totally Ordered
Hierarchical Planning, also called TOHTN planning,

A POHTN problem P = (D,SI , TI) is de�ned over some domain D, has an
initial state SI ∈ 2F , and has a initial compound task TI . The closed world
assumption also holds for HTN planning.

The domain D = (F, TP , TC , δ,M), where F is the �nite set of facts or state
variables, TP is the �nite set of all possible primitive task names, TC is the �nite
set of all possible compound task names, and δ is a mapping from primitive task
name to action. Actions in POHTN domain also have preconditions, adds, and
delete e�ects. M is the �nite set of decomposition methods. Each one maps a
compound task name to a task network. If m ∈ M , then m = (c, tn), where
c ∈ TC .

A task network tn = (T,≺, α) consists of T, which is a �nite set of task
identi�ers (ids); ≺, which is a partial order over T; and α, which maps task ids
∈ T to task names in TC and TP .

A method m decomposes a task network tn1 = (T1,≺1, α1) into a new task
network tn2 by replacing t, if and only if t ∈ T1, α1(t) = c, and ∃tn′ = (T ′,≺′α′)
with tn′ ∼= tnm and T ′ ∩ T = ∅ and

tn2 :=((T1 \ {t}) ∪ T ′,≺1 ∪ ≺′ ∪ ≺X , α1 ∪ α′) (1)

≺X :={(t1, t2) ∈ T1 × T ′ | (t1, t) ∈ ≺1}∪ (2)

{(t1, t2) ∈ T ′ × T1 | (t, t2) ∈ ≺1} (3)

In other words, the decomposition of a compound task results in it being removed
from the task network and replaced by a copy of the method's task network. The
ordering constraints on the removed task are inherited by its replacement tasks,
as de�ned by ≺X .

A solution to an HTN problem is a task network tn = (T,≺, α) if and only if
tn can be reached via decomposing tnI , all tasks are primitive, (∀t ∈ T : α(t) ∈
TP ), and there exists a sequence ⟨t1, t2...tn⟩ of the task ids in T that agrees
with ≺ such that the application of that sequence ⟨α(t1), α(t2)...α(tn)⟩ in SI is
executable.
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In other words, the goal of hierarchical planning is to �nd an decomposition of
the task, then any executable re�nement of the resulting decomposition. Whereas
in classical planning, one only �nds any executable sequence of actions to achieve
a goal state, so HTN planning poses additional restrictions on which action
sequences may be considered.

Totally Ordered Hierarchical Planning, also called TOHTN planning,
is the same as partially ordered planning in all respects except the kind of task
networks it allows. For both planning formalisms, a method m maps a task t to a
task network tn = (T,≺, α). TO planning domains require that ≺ must specify
a total order between task ids in T . This leads to a di�erence in expressiveness
and decide-ability of TOHTN vs POHTN planning. POHTN planning is more
expressive in general (both in terms of plan existence and in terms of computa-
tional complexity). As per Höller et al. [9], if regarded from the standpoint of
formal grammars, TO planning is exactly as expressive as context free languages,
whereas PO planning is strictly more expressive than context-free languages, and
strictly less expressive than context-sensitive languages. In terms of complexity
classes, Erol et al. [4] proved that POHTN planning is semi-decidable, whereas
Alford et al. [1] proved that, assuming arbitrary recursion, TOHTN planning is
2-EXPTIME-complete with variables, and EXPTIME-complete without.

3 Linearization Method

Though this will not always be possible, we want to impose a total order on the
task networks, such that for a method m = (c, (T,≺, α)), the decomposition of
t will result in an executable sequence. To attempt this, one could analyse what
preconditions the execution of sub-tasks in T might need, and what e�ects they
might have. For example, if a sub-task t deletes a fact in the precondition for
sub-task t′, one could order t′ before t to avoid invalidating the precondition for
t′. So we need a way of estimating preconditions and e�ects for compound tasks.
It was proven by Olz et al. [15] that inferring all preconditions and e�ects of a
compound task is as di�cult as solving the problem. Therefore, a polynomial-
time algorithm to infer the exact set of preconditions and e�ects of a compound
task does not exist. However, using an approximated set, one can analyse the
proposed orderings and resolve any con�icts, e.g. cycles. If con�ict-resolution is
necessary, we refer to this as needing cycle-breaking .

The algorithm provided in this paper approximates possible preconditions
and e�ects for all tasks so that this information can be used to linearize meth-
ods. For a given task t, we call these approximate preconditions and e�ects as
pre∗(t), del∗(t), add∗(t). If t is an action, pre∗(t), del∗(t), add∗(t) is the same
as pre(t), add(t), del(t). If t is a compound task, pre∗(t), add∗(t), del∗(t), are
the union of the respective preconditions, add, and delete e�ects of all actions
that t could decompose to, as shown in Figure 1. This means that for a task t
pre∗(t), del∗(t), add∗(t) can contain contradictory e�ects, e.g. t adds and deletes
a fact. These are essentially the mentioned literals de�ned by de Silva et al. [17].
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Figure 2 shows how the additional orderings for a method are determined.
We then attempt to integrate these orderings into the method m = (t, (T,≺, α)).
If there exists a cycle after integrating the new orderings into ≺, we remove a
random one of the new orderings in that cycle, as shown in Figure 3, until that
cycle no longer exists. We repeat this for all methods in order to linearize them.

C

De
del={a}

f
add={b}

g
del={b}

C

add={b}, del={a,b}

De
del={a}

f
add={b}

g
del={b}

Fig. 1: Inferring preconditions and e�ects for compound tasks
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add={b}, del={a, b}

B

add={a}

A

pre={a}

(a) The original method

C

add={b}, del={a, b}

B

add={a}

A

pre={a}

(b) C deletes a fact (a) that is in
preconditions for A � so A is or-
dered before C

C

add={b}, del={a, b}

B

add={a}

A

pre={a}

(c) B adds a fact (a) that C deletes
� so C is ordered before B

C

add={b}, del={a, b}

B

add={a}

A

pre={a}

(d) B adds a fact (a) that is in pre-
conditions for A � so B is ordered
before A

Fig. 2: Adding possible orderings to methods
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(a) Perform depth-�rst search on
the modi�ed method

C

B

A

(b) Identify cycle (path along which
a node is reachable from one of their
ancestors)

C

B

A

(c) Pick an edge not originally in
the method (i.e. a dashed line edge)
and delete it.

C

B

A

(d) Repeat as necessary until
depth-�rst search cannot �nd any
path back to a previously visited
node

C

B

A

(e) Perform depth-�rst search on
the modi�ed method (again)

C

B

A

(f) Identify cycle (path along which
a node is reachable from one of their
ancestors (again))

C

B

A

(g) Pick an edge not originally in
the method (i.e. a dashed line edge)
and delete it (again).

C

B

A

(h) No more cycles, so perform a
topological sort to produce a to-
tal ordering that satis�es the above
constraints

Fig. 3: Cycle breaking to make method linearized
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3.1 Code

∀t ∈ TP : pre∗(t) = pre(t) ∧ add∗(t) = add(t) ∧ del∗(t) = del(t)

∀t ∈ TC : pre∗(t) = {f | ∃m ∈M : m = (t, (T,≺, α))∀t′ ∈ T.∀f ∈ pre∗(t′)}
∀t ∈ TC : add∗(t) = {f | ∃m ∈M : m = (t, (T,≺, α))∀t′ ∈ T.∀f ∈ add∗(t′)}
∀t ∈ TC : del∗(t) = {f | ∃m ∈M : m = (t, (T,≺, α))∀t′ ∈ T.∀f ∈ del∗(t′)}

Data: (F, TP , TC , δ,M)
Result: (F, TP , TC , δ,M)

1 for m = (t, (Tm,≺, α)) ∈M do

/* An edge (t, t′) in G means t is ordered before t′ */

2 G← ≺
3 for a ∈ F do

4 for t ∈ Tm do

5 for t′ ∈ Tm do

6 if a ∈ add∗(t) and a ∈ pre∗(t′), add (t, t′) to G
7 if a ∈ add∗(t) and a ∈ del∗(t′), add (t′, t) to G
8 if a ∈ del∗(t) and a ∈ pre∗(t′), add (t′, t) to G
9 if a ∈ del∗(t) and a ∈ add∗(t′), add (t, t′) to G

10 while G has cycles in it do

11 Delete a random ordering in G that is not in ≺
12 ≺′ = Any linearization of G
13 m′ = (tasks(m),≺′, α(t))
14 M ′ = M ′ ∪ {m′}
15 return D′ = (F, TP , TC , δ,M

′)
Algorithm 1: Calculation of linearized methods

3.2 Runtime

Theorem 1. Given a problem P = (F, TP , TC , δ,M), Algorithm 1 takes at most

quadratic time, O(|M | ∗ |F | ∗ |T |2).

Proof. To calculate pre∗, add∗, del∗ for each task t, we can perform breadth-�rst
search on the task decomposition sub-tree (where tasks are nodes, and edges
indicate possible decomposition by methods) rooted at t. The size of a sub-tree
has an upper limit of TC + TP nodes. For each primitive task in the sub-tree,
we can iterate over each fact to update pre∗, add∗, del∗ for the root t. Thus
calculating pre∗, add∗, del∗ for a single compound task has an upper limit of
(3∗ |F | ∗ |Tp|)+ |TC |. This inference occurs for each compound task, so inference
for all compound tasks takes ((3 ∗ |F | ∗ |Tp|) + |TC |) ∗ |TC | time at most, or
O(|F | ∗ |T |2), where |T | refers to |TP |+ |TC |.

Lines 5 to 12 of Algorithm 1 builds a graph to represent each method. This
graph's nodes are tasks of the task network produced, and the edges represent
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orderings between tasks. The code here iterates over every method, which iterates
over every fact, which iterates over every sub-task in that method, which iterates
over every other sub-task in that method. Leading to (M ∗F ∗(tm)2), where tm is
the average number of sub-tasks per method. So it's at most O(|M | ∗ |F | ∗ |T |2),
since tm has an upper bound of T , where T = Tp + TC .

Lines 12-13 of Algorithm 1 can be done by Depth-First Search (DFS). If
a �back-edge�, de�ned as the edge that leads back to an already visited node
(indicating a loop), then this edge is deleted, providing it was not part of the
original domain. If it was part of the original domain, then assuming that the
back edge was from node A to B, then a random edge is selected along any path
from B to A (i.e. from the other part of the loop) and deleted instead. DFS is
known to be in O(|V |), and �nding a path back can be achieved using Dijkstra's
algorithm, which is known to be in O(|V |2).

Temporal complexity of removing cycles is therefore (|M | ∗ ((tm+ t2m)∗ c)) =
M ∗ tm2 ∗ c, where tm is the number of sub-tasks produced by a method, and c
is the number of cycles. This is approximately O(M ∗ T 2 ∗ c), since tm is upper
bounded by T , where T = Tp + TC .

Line 14 can be done via topological sort of the graph (which is known to be
in O(V + E) in time and O(V ) in space). In this case, the nodes of the graph
are tasks, and the edges are orderings. So that's M ∗ (tm + em), where em is
the number of �edges� in the new method, and has an upper bound of em to
�nd a topological sort for the sub-tasks of every method. That's approximately
O(|M |∗|T |), since both tm and te are upper bounded by T , such that T = Tp+TC .

So in total the main algorithm takes:
(|M | ∗ |F | ∗ |T |)) + (|M | ∗ |F | ∗ |T |2) + (|M | ∗ |T |2 ∗ c) + (|M | ∗ |T |))

The number of times we need to remove an edge in a cycle, c, has an upper
limit of |F |. Adding an additional ordering (which may cause a cycle) requires
interaction, and removing the aforementioned additional ordering will remove
the cycle. Thus the maximum run-time of this algorithm is in O(M ∗ F ∗ T 2),
i.e. quadratic time at most.

3.3 Theoretical properties

Theorem 2. Given a POHTN planning problem P and TOHTN problem P ′

obtained from P by using Algorithm 1 then the solution set of P ′ is a not neces-

sarily strict subset of that of P .

Proof. The new desired orderings for a method include all of the orderings al-
ready required by the method originally. The algorithm then turns the tasks and
new desired orderings between them into a directed graph, and the new ordering
is produced by performing a topological sort on the nodes of that graph. This
means we do not modify the sub-tasks a method produces, just the ordering
between them, so the set of plans from the totally ordered method is just a
subset of the plans possible from the partially ordered one. Any solution to the
linearized problem is then obviously a solution to the original problem. ⊓⊔
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Theorem 3. Given a POHTN planning problem P and TOHTN problem P ′

obtained from P by using Algorithm 1 then the solution set of P ′ may be empty.

Proof. This algorithm linearizes all the methods to be totally ordered. Since sub-
tasks inherit the orderings of their parents, it's impossible to preserve a solution
that requires the interleaving of sub-tasks if their respective parents that are
already ordered with respect to each other. This proves that the algorithm can
remove some possible action sequences, assuming the original domain was not
already totally ordered. Consider the simple example problem:

F ={a, b, c}
Np ={A,B,C}
Nc ={AC, TI}
M ={(TI , {AC,B}),

(AC, {A,C})}
SI ={a}

TI

AC

A
pre={a}, del={a}, add={b}

B
pre={b}, del={b}, add={c}

C
pre={c}, del={c}

Fig. 4: Diagram showing an example problem and its decomposition.

SI A B C
a b c

Fig. 6: The only possible solution A,B,C for E.g. 1, requires the children of AC
and B to be interleaved, meaning we cannot impose an order between them

The only decomposition for this problem results in the set of un-ordered
actions {A,B,C}. If we consider that for the 3! linearizations of this set, the only
executable one is A,B,C. This is impossible to achieve by linearized methods,
since ordering either AB before C or C before AB will exclude the solution.
Even if we were to produce k! methods for each partially ordered method with
k unordered sub-tasks, we would not be able to preserve any solution for this
problem.

This proves that the algorithm can remove all solutions, so Algorithm 1 is
not complete. Note that incompleteness already follows from complexity theory
as it's theoretically impossible to turn an arbitrary undecidable problem into a
decidable one. Speci�cally, solutions that require interleaving of sub-tasks will
not be preserved, as the example above demonstrates. ⊓⊔

We will now see that our algorithm preserves at least one solution as long as
Algorithm 1 does not have to break cycles.
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Theorem 4. Given a POHTN planning problem P and TOHTN problem P ′

obtained from P by using Algorithm 1, if Algorithm 1 did not have to cycle-

break, then if the solution set of P is non-empty then the solution set of P ′ will

be non-empty as well.

Proof. Assume that there exists a solution in the PO domain. By using the same
decomposition sequence in the linearized domain, we can produce the same set of
actions as in the PO solution, but with a linearization of the actions decided by
the linearized domain. Assume this sequence is (a0, a1, ..., an). We then prove by
induction over the sequence (a0, a1, ..., an) that it is executable. If (a0, a1, ..., an)
is not executable, that means there exists some action ak, 0 < k < n that is
not executable in the corresponding state. The action ak could only be non-
executable, if one or more of its preconditions was not met. Assume one of these
unmet preconditions is for existence of the state variable A. The action ak must
be executable in some linearization of {a0, ..., an}, as we assumed it was a PO
solution. So there must exist an action ai, 0 < i < n, that will add A. Actions
a0 and ak must have a shared parent p in a Task Decomposition Tree. So p has
subtasks t0 and tk that are parents of a0 and ak respectively.

The linearization of this method would have drawn an ordering (ti, tk) due
to the way the algorithm de�nes prec∗, add∗ etc. We are assuming that all meth-
ods linearized without con�ict, so (ti, tk) should not be required. This safely
enforces (ak, a0) ordering in the �nal TO plan, meaning a0 is not the �rst action
in the resulting total order imposed by the algorithm. In other words, if ak's
precondition could be met by any action ai, ai would be ordered in front of it.

If ai does not exist then ak can never be executed for any linearization of
{a0, ...an}, contradicting the assumption that this was a PO solution. Since each
action in the solution is executable, the entire sequence is executable linearization
of actions produced by decomposition of initial task, i.e. the solution. ⊓⊔

There are several levels of �completeness� possible.

� all solutions remain
� at least one solution remains
� all optimal solutions remain
� at least one optimal solution remains

Given what's proven in Theorem 3 and 4, Algorithm 1 guarantees at least one
solution remains, if no cycle-breaking is needed. If cycle-breaking is needed,
Algorithm 1 makes no completeness guarantees at all � it may remove all possible
solutions. Finally, Algorithm 1 makes no decisions on any metric of optimality,
so obviously cannot guarantee completeness that any optimal solutions remain.

Theorem 5. For any problem P that satis�es the criterion for linearization

without cycle-breaking, the problem P ′ obtained from applying the algorithm to

P forms a new class of decidable problems.

Proof. A problem P ′ obtained from applying Algorithm 1 to any arbitrary P is
a totally ordered problem, which are known to be decidable [1]. ⊓⊔
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4 Empirical Evaluation

To prove that our technique is bene�cial, we conduct a standard empirical eval-
uation on PO domains and compare the runtime of a state-of-the-art planning
system on the original problem vs. the transformed problem. All problems are
taken from two benchmark sets prepared for 2020 IPC. The �rst set1 was used
in the partially ordered track in the 2020 IPC benchmark, while the second set2

went un-used for various reasons. However, the second set still contains valid
POHTN problems, so we include it here as well. Each problem has the standard
IPC time limit of 30 minutes. Where grounding and pre-processing is needed,
the time to do this is included as part of the 'solving' time required. Since the
pre-processing may potentially remove all solutions, where the planning system
can prove that the pre-processing renders a problem unsolvable, we use the re-
maining time to solve the original problem.

Hardware and Planning Systems The empirical evaluation was conducted
on a machine with 30GiB of memory and 4 vCPUs, each with 2 GiB RAM, for a
total of 8 GiB RAM. We use the pandaπ solver [10] [12] [11] on the con�guration
of Greedy best �rst search with visited lists. We try this search with 4 di�erent
RC-heuristics: FF [8], Add [3], Filter [11] and Landmark-cut [7].

We compare the performance of these 4 planner settings on the original
problem and the pre-processed problem. We also try the Lilotane planner [16],
which is specialised for TOHTN problems.

4.1 Results

Fig. 7: Percentage of problems for which
linearized problems is faster to solve, for
problems that took at least x seconds to
solve, with x being the value on the x-
axis.

1 https://github.com/panda-planner-dev/ipc2020-domains/tree/master/
partial-order

2 https://github.com/panda-planner-dev/domains/tree/master/partial-order

https://github.com/panda-planner-dev/ipc2020-domains/tree/master/partial-order
https://github.com/panda-planner-dev/ipc2020-domains/tree/master/partial-order
https://github.com/panda-planner-dev/domains/tree/master/partial-order
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RCadd RCFilter RCFF RCLM-Cut Lilotane

max PO TO PO TO PO TO PO TO

Barman-BDI 1 0.08 0.4 0.07 0.34 0.07 0.36 0.05 0.22 0.66

Monroe Fully Observ. (2) 1 0.56 0.45 0.31 0.3 0.46 0.41 0.22 0.18 0.07
Monroe Part. Observ. (2) 1 0.31 0.25 0.13 0.11 0.31 0.26 0.17 0.14 0.0
PCP (17) 1 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.0
Rover 1 0.29 0.95 0.14 0.52 0.2 0.78 0.16 0.48 0.98

Satellite 1 0.91 1.0 0.76 1.0 0.99 1.0 0.89 0.99 1.0

SmartPhone (1) 1 0.71 0.71 0.69 0.71 0.71 0.71 0.71 0.71 0.71

Transport 1 0.24 0.61 0.04 0.05 0.27 0.32 0.12 0.2 0.71

UM-Translog (1) 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.95
Woodworking (2) 1 0.38 0.58 0.2 0.41 0.36 0.57 0.27 0.39 0.47

Monroe 1 0.77 0.69 0.5 0.47 0.75 0.71 0.53 0.53 0.46
SmartPhone (1) 1 0.71 0.71 0.69 0.71 0.71 0.71 0.71 0.71 0.71

Zenotravel 1 1.0 1.0 0.63 1.0 1.0 1.0 0.83 1.0 1.0

Total IPC score 13 7.8 9.2 6.0 7.5 7.7 8.7 6.5 7.4 7.7

Table 1: IPC score, with and without pre-processing, for all planners. If any
problems in that domain were proven unsolvable by TO, a number in brackets
beside domain name shows how many.

RCadd RCFilter RCFF RCLM-Cut Lilotane

max PO TO PO TO PO TO PO TO

Barman-BDI 20 3 10 3 10 3 10 2 9 16

Monroe Fully Observ. (2) 25 25 25 18 25 22 25 15 16 6
Monroe Part. Observ. (2) 24 14 14 7 7 14 15 10 10 0
PCP (17) 17 14 14 14 14 14 14 14 14 0
Rover 20 6 20 4 14 4 19 4 14 20

Satellite 25 24 25 22 25 25 25 24 25 25

SmartPhone (1) 7 5 5 5 5 5 5 5 5 5

Transport 40 12 28 2 2 13 14 7 12 31

UM-Translog (1) 22 22 22 22 22 22 22 22 22 21
Woodworking (2) 30 13 19 7 15 12 20 9 15 15

Monroe 100 96 100 79 88 92 100 81 90 83
SmartPhone (1) 7 5 5 5 5 5 5 5 5 5

Zenotravel 5 5 5 5 5 5 5 5 5 5

Coverage 342 244 292 193 237 236 279 203 242 232
Norm. coverage 13 8.94 10.67 7.57 9.17 8.71 10.34 7.81 9.16 8.53

Table 2: Coverage, with and without pre-processing, for all planners. If any
problems in that domain were proven unsolvable by TO, a number in brackets
beside domain name shows how many.
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(a) Using heuristic RCadd (b) Using heuristic RCFilter

(c) Using heuristic RCFF (d) Using heuristic RCLM-Cut

Fig. 8: Comparison of time to solve PO and TO problems, for each pandaπ setting

4.2 Analysis

Table 1 and 2 shows that the IPC score and coverage when pre-processing is
overall signi�cantly better than when not using pre-processing.

However in some domains there is minimal gain, if any at all. This seems to
be because some domains are dominated by small problems. E.g. 14 of the 17
PCP problems take less than 0.5 seconds to solve. For very small problems, the
pre-processing still takes time, but very little improvement can be gained in the
actual solving time. In fact, a second of pre-processing time for a problem that
only takes a few seconds to solve will worsen IPC score.

On the other hand, big problems experience signi�cant improvement, enough
to make problems solvable within the time limit where they were previously too
memory or time intensive. We can see that di�erence in domains like Rover and
Barman-BDI, where there is signi�cant space to improve on coverage/speed.

Table 4 and Table 3 summarises the results of our empirical evaluation on
the IPC 2020 benchmarks. The �unsolvable� columns refer to problems that
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Solved Out of Memory Timeout Unsolvable

RCadd

TO 287 27 21 0
PO 239 65 31 0

Either 287 72 40 0

RCFilter

TO 232 85 18 0
PO 188 115 32 0

Either 232 125 35 0

RCFF

TO 274 41 20 0
PO 231 76 28 0

Either 274 85 37 0

RCLM-Cut

TO 237 6 92 0
PO 198 11 126 0

Either 237 12 126 0

Table 3: With re-run policy

Solved Out of Memory Timeout Unsolvable

RCadd

TO 266 24 20 25
PO 239 65 31 0

Either 287 72 40 25

RCFilter

TO 212 80 18 25
PO 188 115 32 0

Either 232 125 35 25

RCFF

TO 253 38 19 25
PO 231 76 28 0

Either 274 85 37 25

RCLM-Cut

TO 217 2 91 25
PO 198 11 126 0

Either 237 12 126 25

Lilotane TO 227 108 0 0

Table 4: Without re-run policy

the solver determined to have no solutions. Lilotane [16], the runner-up for the
totally ordered track in the 2020 IPC competition, cannot prove that a problem
is unsolvable, and thus can't use a re-run policy, unlike the pandaπ planner. Note
that Lilotane wants a lifted representation, but a grounded representation was
used here, to its disadvantage.

The PCP domain in particular was rendered unsolvable for all instances. In
Table 1 and Table 2, PCP17 indicates that 17 PCP problems were unsolvable.
So all 14 problems �solved� in the TO context was from re-running the planner
on the original problem using the remaining time. Incidentally, the exact same
problems were proven unsolvable for all planners.

The PCP domain de�nes the post-correspondence problem, which is known
to be undecidable. Totally ordered HTN planning problems are always decidable
[9], meaning it's a direct consequence that these problem instances are unsolvable
without task interleaving. In this speci�c case, the PCP problems designed for
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the IPC benchmark are known to be unsolvable without interleaving [13]. Table 3
shows the results on the default setting, when allowing the planner to try solving
the original problem as a back-up plan when the linearized problem fails. Lilotane
is excluded from Table 3 as it cannot prove a problem is unsolvable, and so cannot
use the re-run policy. instead. Table 4 shows results without the default back-up
strategy.

From Table 3 and 4 we can see that this processing means that many
more problems can be solved in the time limit, where previously they were too
computation-intensive, and very few problems (primarily problems for which
interleaving is required for all solutions) become unsolvable due to the transfor-
mation. Despite the fact that none of the instances can be linearized without
cycle-breaking, only 25/274 of linearized problems are unsolvable, 17 of which
are from the PCP domain, where a solvable linearization does not exist.

5 Conclusion

Though it's impressive performance on a range of domains is good news, the suc-
cess of this approach on the IPC benchmark ultimately hinges on the relative lack
of unsolvable problems � e.g. PCP problems in the ICAPS benchmark. When
the pre-processed domain eliminates all solutions, signi�cant time is wasted in
proving this. Fortunately, the IPC benchmark covers a wide variety of domains,
so the performance of the pre-processing is hopefully indicative of good perfor-
mance in other problems as well. Ultimately, it's also an undecidable problem to
detect when a problem cannot be converted to TOHTN representation (as that
would be solving whether the problem is undecidable), so no perfect solution
exists.

6 Further Work

Given that HyperTensioN [14] and Lilotane [16], planning systems that work on
lifted totally ordered problems, and rely signi�cantly on lifted input for their
e�ciency, it would be of interest to generalise this technique to produce lifted
domains, so that HyperTensioN and Lilotane can solve the linearized problem
more e�ciently. For another, the success of this solution was, as stated before,
in part due to the relatively few undecidable problems in the benchmark set. A
heuristic to decide whether or not to pre-process, so that we can reduce the case
where the planning system attempts to solve an unsolvable problem might allow
this procedure to generalise better in less favourable circumstances.
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