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Why turn PO to TO?

POHTN planning is semi-decidable

TOHTN planning is decidable. Specifically 2-EXPTIME-complete
with variables (EXPTIME-complete without)

Converting a POHTN problem to a TOHTN problem allows us to
exploit specialised algorithms and heuristics
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Introduction to HTN Planning
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Problem Definition

A problem P = (D,SI , TI)

has an initial state SI ∈ 2F

has a initial compound task TI

is defined over some domain D = (F , TP , TC , δ,M)
• F is the finite set of state variables,
• TP is the finite set of all possible primitive task names
• δ is a mapping from primitive task name to preconditions and

effects.
• TC is the finite set of all possible compound task names
• M is the finite set of methods. Each one maps a compound task

name to a task network.
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Problem Definition (continued)

A task network tn = (T ,≺, α) consists of

T, which is a finite set of task identifiers (ids)

≺, which is a partial order over T;

α which maps task ids ∈ T to task names in TC and TP .

TOHTN problems require ≺ to be a total order.

A solution to a HTN problem is a task network tn = (T ,≺, α) created
via decomposing tnI . All tasks are primitive, and the sequence must be
executable.
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F ={a, b, c}
SI ={a}
Np ={A,B,C}
Nc ={AC, TI}
M ={(TI , {AC,B}),

(AC, {A,C})}

TI

AC

A
pre={a}, del={a}, add={b}

B
pre={b}, del={b}, add={c}

C
pre={c}, del={c}

(a) The only possible solution A,B,C, requires interleaving

SI A B C
a b c

SI B A C
6= b

SI A C B
a b 6= c
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Approach

Ying Xian Wu, Songtuan Lin, Gregor Behnke, Pascal Bercher 7.27



Motivation Introduction to HTN Planning Approach Contributions Summary

Linearization Intuition: Linearization Intuition

Transform the problem by linearizing methods

We want a linearization that will preserve at least one solution.

A task can’t be executed if its preconditions can’t be met.
Therefore:
• want tasks that add the precondition state variable to execute

before-hand
• don’t want tasks that delete its preconditions to directly precede it
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Linearization Intuition: Linearization might remove solutions

F ={a, b, c}
SI ={a}
Np ={A,B,C}
Nc ={AC, TI}
M ={(TI , {AC,B}),

(AC, {A,C})}

TI

AC

A
pre={a}, del={a}, add={b}

B
pre={b}, del={b}, add={c}

C
pre={c}, del={c}

(a) The only solution A,B,C, requires interleaving. Ordering B before AC, or AC
before B, cannot lead to a solution.

SI A B C
a b c

SI B A C
6= b

SI A C B
a b 6= c
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Algorithm Example: Infer Preconditions and Effects

C

De
del={a}

f
add={b}

g
del={b}

C

add={b}, del={a,b}

De
del={a}

f
add={b}

g
del={b}

Figure: Inferring preconditions and effects for compound tasks
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Algorithm Example: Add Orderings

C

add={b}, del={a, b}

B
add={a}

A

pre={a}

(a) Method with sub-tasks A,B,C, where C is ordered
before A

Figure: Adding possible orderings to methods
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Algorithm Example

C

add={b}, del={a, b}

B
add={a}

A

pre={a}

(a) C deletes variable a, that is in preconditions for A -
so A is ordered before C, to prevent making A
un-executable

Figure: Adding possible orderings to methods
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Algorithm Example: Add Orderings (continued)

C

add={b}, del={a, b}

B
add={a}

A

pre={a}

(a) B adds a variable a that C deletes - so C is
ordered before B, to preserve a

Figure: Adding possible orderings to methods

Ying Xian Wu, Songtuan Lin, Gregor Behnke, Pascal Bercher 13.27



Motivation Introduction to HTN Planning Approach Contributions Summary

Algorithm Example: Add Orderings (continued)

C

add={b}, del={a, b}

B
add={a}

A

pre={a}

(a) B adds a variable a that is in preconditions for A -
so B is ordered before A, to help make A executable

Figure: Adding possible orderings to methods
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Algorithm Example

C

B

A

(a) Perform depth-first search on
the modified method

C

B

A

(b) Identify cycle (path along which
a node is reachable from one of
their ancestors)

Figure: Cycle-breaking (cycle 1)
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Algorithm Example: Linearization of orderings

C

B

A

(a) Pick an edge not originally in
the method (i.e. a dashed line
edge) and delete it.

C

B

A

(b) Repeat as necessary until there
is no path back to a previously
visited node

Figure: Cycle-breaking (cycle 1)
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Algorithm Example: Linearization of orderings

C

B

A

(a) Perform depth-first search on
the modified method (again)

C

B

A

(b) Identify cycle (path along which
a node is reachable from one of
their ancestors (again))

Figure: Cycle-breaking (cycle 2)
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Algorithm Example: Linearization of orderings

C

B

A

(a) Pick an edge not originally in
the method (i.e. a dashed line
edge) and delete it (again).

C

B

A

(b) No more cycles, so perform a
topological sort to produce a total
ordering

Figure: Cycle-breaking (cycle 2)
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Algorithm Example

C

B

A

(a) Perform a topological sort on
this

C B A
(b) Resulting Linearization
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Contributions
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New class of decideable problems

Theorem

You can preserve at least one solution if you linearize all methods
without having to cycle-break.

Proof outline

Suppose we want to execute task t , with precondition f .

Then f is in the initial state, or there’s a task that adds f .

Tasks that delete f are ordered after t , by algorithm definition.

Tasks that add f are ordered before t , by algorithm definition.

So f is present before t executes, and not deleted until t has
executed.
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New class of decideable problems

When certain criteria are met, it guarantees that at least one solution
will be preserved. This means we obtain a new class of decidable
problems, namely those that satisfy the above mentioned criteria.
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Empirical Evaluation

7.3 percent of problems were unsolvable after linearization.

11 percent increase in number of solvable problems

20 percent increase in number of solvable problems if using
re-run policy
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Empirical Evaluation

Table: IPC score, with and without pre-processing, for all planners. If any problems in
that domain were proven unsolvable by TO, a number in brackets beside domain
name shows how many.

RCadd RCFilter RCFF RCLM-Cut Lilotane

max PO TO PO TO PO TO PO TO

Barman-BDI 1 0.08 0.4 0.07 0.34 0.07 0.36 0.05 0.22 0.66
Monroe Fully Observ. (2) 1 0.56 0.45 0.31 0.3 0.46 0.41 0.22 0.18 0.07
Monroe Part. Observ. (2) 1 0.31 0.25 0.13 0.11 0.31 0.26 0.17 0.14 0.0
PCP (17) 1 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.0
Rover 1 0.29 0.95 0.14 0.52 0.2 0.78 0.16 0.48 0.98
Satellite 1 0.91 1.0 0.76 1.0 0.99 1.0 0.89 0.99 1.0
SmartPhone (1) 1 0.71 0.71 0.69 0.71 0.71 0.71 0.71 0.71 0.71
Transport 1 0.24 0.61 0.04 0.05 0.27 0.32 0.12 0.2 0.71
UM-Translog (1) 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.95
Woodworking (2) 1 0.38 0.58 0.2 0.41 0.36 0.57 0.27 0.39 0.47

Monroe 1 0.77 0.69 0.5 0.47 0.75 0.71 0.53 0.53 0.46
SmartPhone (1) 1 0.71 0.71 0.69 0.71 0.71 0.71 0.71 0.71 0.71
Zenotravel 1 1.0 1.0 0.63 1.0 1.0 1.0 0.83 1.0 1.0

Total IPC score 13 7.8 9.2 6.0 7.5 7.7 8.7 6.5 7.4 7.7
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Empirical Evaluation

Table: Coverage, with and without pre-processing, for all planners. If any problems in
that domain were proven unsolvable by TO, a number in brackets beside domain
name shows how many.

RCadd RCFilter RCFF RCLM-Cut Lilotane

max PO TO PO TO PO TO PO TO

Barman-BDI 20 3 10 3 10 3 10 2 9 16
Monroe Fully Observ. (2) 25 25 25 18 25 22 25 15 16 6
Monroe Part. Observ. (2) 24 14 14 7 7 14 15 10 10 0
PCP (17) 17 14 14 14 14 14 14 14 14 0
Rover 20 6 20 4 14 4 19 4 14 20
Satellite 25 24 25 22 25 25 25 24 25 25
SmartPhone (1) 7 5 5 5 5 5 5 5 5 5
Transport 40 12 28 2 2 13 14 7 12 31
UM-Translog (1) 22 22 22 22 22 22 22 22 22 21
Woodworking (2) 30 13 19 7 15 12 20 9 15 15

Monroe 100 96 100 79 88 92 100 81 90 83
SmartPhone (1) 7 5 5 5 5 5 5 5 5 5
Zenotravel 5 5 5 5 5 5 5 5 5 5

Coverage 342 244 292 193 237 236 279 203 242 232
Norm. coverage 13 8.94 10.67 7.57 9.17 8.71 10.34 7.81 9.16 8.53
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Summary
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Summary

1 Almost all problems retain solutions after linearization

2 Problems are generally solved more quickly when using
linearization algorithm, for a variety of planners/heuristics.

3 Critera for new class of decidable problems.
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