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ABSTRACT
Modern ultralight aircraft in general aviation are equipped with
an onboard Pilot Assistance System (PAS) as a companion sys-
tem, meant to guide the pilot in decision-making, e.g. with plan
suggestions, especially in critical situations. For more meaningful
guidance, the PAS must possess a continuous understanding of the
context, i.e. the pilot’s intention, so that decision-making support is
relevant. However, in realistic settings, the pilot’s intention is not
communicated manually, but can only be proactively monitored
by the PAS. This paper explores the possibility of embedding do-
main expertise using Hierarchical Task Network (HTN) planning
to track the pilot’s intention, by recognising the pilot’s current goal
task judging from the pilot’s actions. Furthermore, by leveraging
probability theory for state estimation, we derive belief values to
be associated with the recognised goal task, inferred from already
executed actions which are in turn inferred from in-cockpit observ-
able measurement data. Statistical evaluation using data collected
from human-in-the-loop tests shows that our method for tracking
the pilot’s intention is reliable enough to provide the PAS with a
contextual understanding in real time.

CCS CONCEPTS
• Human-centered computing→ User models.
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1 INTRODUCTION
Piloting an airplane involves perceiving and processing a wide array
of information and subsequently, acting (as optimally as possible)
by performing sub-tasks to achieve the intended goal tasks, e.g.
land airplane, fly to a location, cruise at a fixed altitude, etc. Due
to the abundance of information to be processed, performing tasks
can lead to mental overload [38]. This in turn increases the num-
ber of human-induced errors during the flight, or worse, during
emergency situations. Pilot Assistance Systems (PAS) have been
developed as onboard companion systems to help mitigate these
errors and make flying safer [33]. Some examples are CHAP-E [3]
and LNAS [1]. CHAP-E guides the pilot by providing action check-
lists in different stages of the flight according to the state of the
environment and the airplane. LNAS is a landing assistance system
that suggests optimized flight plans based on fuel consumption and
noise reduction. These systems are developed for larger aircraft,
typically for airliners. Although adaptable for other types of aircraft,
e.g. Ultralight (UL) aircraft, little work in this regard has been done.

UL aircraft belongs to the class of smaller and lighter aircraft
geared mainly towards amateur pilots. Therefore, legal require-
ments on flight training for UL-pilots are in general less demanding.
While this makes flying a UL more accessible for the general public,
studies have shown that most accidents in general aviation result
from human (pilot) error [10], which are often fatal. Furthermore,
studies have sustained the proof that the integration of PAS as
onboard companion systems can reduce the number of fatalities [6].
In line with this report, companion systems should be built into
future UL cockpits to mitigate pilot errors by providing contextual
help so as to assist the pilot by complementing their skills according
to flight situations, and by intervening whenever necessary, thus
timely reducing the risk of fatal accidents. For this, it is essential for
the PAS to understand the context, or more concretely, the pilot’s
intention, in order to assist the pilot in a meaningful manner.

In this work, we conceptualise and develop an automated in-
tention tracking module of the PAS by exploring a Plan and Goal
Recognition (PGR) method based on Hierarchical Task Network
(HTN) planning. The motivation to explore HTN-planning for PGR
is twofold. Hierarchical planning is often used for providing flight
guidance to pilots, since tasks in pilots’ handbooks are often formu-
lated in a hierarchical manner. Furthermore, more HTN planning
techniques are becoming available as open-source tools, and can
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therefore be exploited for HTN-based PGR as well. Using HTN-
based PGR to devise the current goal task requires a list of already
executed actions (also referred to as “action prefix”) [17]1, which
can only be inferred from observable measurement data. Therefore,
we develop a method to determine the belief value of the recognised
goal task, which also represents the extent to which the PAS thinks
the goal task in question is intended by the pilot.

We first provide an overview of related works, followed by the
problem statement. Subsequently, we describe howHTN-based PGR
is used, followed by a method to determine the belief value of the
recognised goal task, given the observable measurement data. For
validation purposes, we use the Ultralight Cockpit planning domain
[25] to perform our human-in-the-loop tests and thus demonstrate
that HTN backed-systems are suitable for this use case.

2 RELATEDWORK
Besides PAS such as CHAP-E and LNAS described in Section 1,
various companion systems, i.e. technical systems that appear as
companions to their users, were developed [7]. They are meant for
executing daily chores, such as Do It Yourself, in which the user
is guided through home improvement tasks by detailed instruc-
tions generated according to preferences [4], as well as interactive
robotic companions for shopping [5] or for elderly care [37]. Be-
sides, a surge of companion technologies can be seen in Real-Time
Safety-Critical (RTSC) systems, such as Advanced Driver Assistant
Systems (ADAS), which are indispensable companion systems in
many modern automotive cockpits [41].

The companion technology Do It Yourself generates contextual
guidance by considering the user’s preferences provided manually
by the user [4]. In RTSC systems, it is unlikely for the PAS (or ADAS)
to gain awareness of the context using methods based on manual in-
put. PAS (or ADAS) usually rely on different paradigms, for example
by recognising the pilot’s (or driver’s) current activity or intention.
Where data is abundant, machine learning approaches using video
or other sensor data are popular for activity recognition [12, 29, 40].
Although these approaches have gained huge popularity in activ-
ity recognition in the automotive domain, the usability in PAS is
relatively low because data is scarce in this setting. On the other
hand, many methods inspired by Belief-desire-intention models
were developed, such as the knowledge-based intent recognition
system for PAS [35], as well as other approaches based on proba-
bility theory [36] and evidence theory [19] that were also proven
usable to detect pilot’s intention. Grammar-based representation
for plan recognition was described by Geib and Steedman in [13];
the application of grammar-based plan recognition was proven
successful in a pedagogical context in [2] and in an exploratory
domain in [27]. [22] provides an overview of various approaches for
achieving activity recognition. However, these methods do not draw
benefits from the emerging automated planning technologies and
are often decoupled from decision-making support mechanisms.

In automated planning, “planning” is considered the process of
“choosing and organizing the actions that can achieve the given ob-
jective” [15]. Determining the sequence of actions (or the objective)
the agent is pursuing is referred to as plan (or goal) recognition.

1For example, to perform the goal task “land airplane”, the pilot needs to execute
actions to “align airplane to the landing stripe”, “decrease airspeed”, etc.

In classical planning, PGR as planning was introduced by Ramirez
and Geffner [30], where modified planning systems were used, and
was later extended to work with off-the-shelf planners [31].

Hierarchical planning is another planning paradigm, that is more
expressive than classical planning and can include more extensive
domain expert knowledge to decompose a high-level task (network)
into low-level executable actions. Therefore, the use of hierarchi-
cal planning has been explored in a wide range of applications,
from web services [34], robotics [20, 39], to driver activity recogni-
tion [11], and even mission or flight planning in aerospace [3, 24].

Analogous work on PGRwas also developed using the HTN plan-
ning paradigm. Höller et al. developed a PGR method that requires
only the transforming of plan recognition problems into HTN plan-
ning problems [17], which, different from the goal recognition tech-
nique discussed in [8] that uses the transformation technique, no
special solver is required. It benefits entirely from the advancement
made in HTN planning. Since HTN is more expressive than their
counterparts in classical planning and allows to model the tasks in
a more human-like nature [14, 16], PGR as HTN planning problem
is therefore highly applicable in PAS, where expert knowledge is
often also hierarchical in nature.

3 PROBLEM STATEMENT

Figure 1: Intention tracking in PAS.

Figure 1 depicts the architecture of a PAS to track the pilot’s
intention and consists of measurement data, an action recognition
module and a PGR module. A main concern in a companion system
used for RTSC systems is to provide appropriate decision-making
support at the right moment. However, the appropriate support de-
pends largely on the pilot’s needs, which vary over time, depending
on the pilot’s intention, which, in a realistic cockpit configuration,
is not communicated explicitly. It is therefore essential to infer the
pilot’s intention from observable measurement data, such as flight
data, fixation points2, as well as interactions with the User Interface
(UI) of the cockpit and with the control elements.

In this paper, we assume that the pilot’s intention is represented
by a goal task (e.g. land) inferred from actions, which are in turn
inferred from observed measurement data. Each goal task 𝐺𝑙 ∈
G = {𝐺1, . . . ,𝐺𝐿} can be mapped to an initial task network 𝑡𝑛𝐼
(composed of only one abstract root task) described by Höller et
al. [17]. Formally, we consider the set of observation data X =

X𝑑 ∪ X𝑐 , where X𝑑 = {𝑋𝑑
1 , . . . , 𝑋

𝑑
𝐼𝑑
} denotes the set of different

types of discrete raw observation data (e.g. button_state), and
𝑋𝑑
𝑖

= 𝑥𝑑
𝑖
∈ {0, 1}, while X𝑐 = {𝑋𝑐

1 , . . . , 𝑋
𝑐
𝐼𝑐
} denotes the set of

different types of continuous raw observation data (e.g. ‘flight alti-
tude’), and 𝑋𝑐

𝑖
= 𝑥𝑐

𝑖
∈ R. The solution to our intention recognition

2Wearable eye trackers are becoming more miniaturised to be integrated into sun-
glasses or helmets worn by pilots.
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problem is a set of belief values associated to all goal tasks , i.e.
bel(G) = {bel(𝐺1 = 1), . . . , bel(𝐺𝐿 = 1)} being true. The goal task
with the most substantial belief value will be considered the pilot’s
intention by the PAS; subsequent decision-making support will be
based on the recognised intention.

4 USING HTN PLANNING FOR PLAN
RECOGNITION

A widely used formalism in hierarchical planning is HTN plan-
ning [16]. An HTN planning problem can be defined as a tuple
𝑃 = (𝐹,𝐶,𝐴,𝑀, 𝑠0, 𝑡𝑛𝐼 , 𝑔, 𝑝𝑟𝑒𝑐, 𝑎𝑑𝑑, 𝑑𝑒𝑙). 𝐹 is a set of propositional
state features. A state 𝑠 is defined by the subset of state features
that hold true. The initial state of the problem is 𝑠0 ∈ 2𝐹 , while
𝑔 ⊆ 𝐹 is the state-based goal description. 𝐴 is the set of symbols for
actions (or primitive tasks)3 directly executable by the actor in the
domain, while 𝐶 is the set of symbols for compound tasks (to be
decomposed into actions). The decomposition is defined using the
methods defined in𝑀 . The preconditions, add-, and delete-effects
of action are defined in 𝑝𝑟𝑒𝑐, 𝑎𝑑𝑑, 𝑑𝑒𝑙 respectively. 𝑡𝑛𝐼 is the initial
task network. A solution to an HTN planning problem is a task
network4 that can transform the initial task network to a plan (a
sequence of actions) that is executable at the initial state 𝑠0.

4.1 Plan and goal recognition as HTN planning
Plan and goal recognition as HTN planning compiles the PGR prob-
lem into an HTN planning problem. Let the sequence of observed
actions be 𝑂𝑘 = (𝑜1, 𝑜2, . . . , 𝑜𝑖 ) ,∀𝑜 ∈ 𝑂𝑘 , 𝑜 ∈ 𝐴. Then new proposi-
tional symbols and duplicates of the actions in 𝑂𝑘 are introduced
as a plan prefix, to be placed correctly into the generated plan [17].
New decomposition methods are defined so that newly defined
actions with altered preconditions, state features, and effects can
be reached. The PGR problem is then reduced to an HTN planning
problem that can be solved using off-the-shelf planners, such as
the PANDA planning framework5 [17]. For brevity, specific PGR-
methods for the definition of new actions, propositions, and compo-
sition methods are not discussed here but can be found in [17]. The
solution of a PGR-problem is a goal task (i.e. an initial task network
𝑡𝑛𝐼 ) recognised as being performed, given the observed actions 𝑂𝑘 .

Algorithm 1 summarizes how the PANDA planning framework
can be used to recognise a goal task. The lines in black describe the
conventional method, while the lines in blue take into account the
partial observability of the problem, which will be detailed in the
following section. Conventionally, observed actions are parsed into
an observation list (see for loop from Line 5) and included in an
observation file to be used together with the domain and problem
files6 by PANDA for PGR (see Line 12). Initial task networks of
problem files that obtain a successful plan given the observation file
will be parsed as goal tasks (see Line 13). Algorithm 1 is performed
periodically at a pre-defined time interval.

3In an HTN, the terms primitive tasks and actions can be used interchangeably to
describe tasks of the lowest abstraction-level that can be executed by the agent.
4A task network is a set of compound tasks and actions, governed by their ordering
relations.
5https://github.com/panda-planner-dev/pandaPIpgrRepairVerify
6The domain file describes the compound tasks and actions, as well as the methods to
decompose a compound task in a totally or partially ordered manner. A problem file
for PGR contains the initial states, and the initial task network.

Algorithm 1 Algorithm for plan recognition with belief value
1: Collect all available measurement data

𝑋𝑐
1 , . . . , 𝑋

𝑐
𝑀𝑋

, 𝑋𝑑
1 , . . . , 𝑋

𝑑
𝑁𝑋

at time 𝑡
2: Determine the belief values of the evidences using Equation 5
3: Determine the belief values of the actions using Equation 7
4: observations_list← []
5: for each observed action 𝑜 do
6: if 𝑏𝑒𝑙 (𝑜) ≥ 𝑏𝜖 then
7: observations_list.append(𝑜)
8: end if
9: end for
10: write observations_list to the observation file
11: for each problem_file do
12: run PGR using domain, problem and observation files
13: parse goal task, if a plan exists
14: end for
15: Determine the belief value for each detected goal task using

Equation 8

However, the conventional method of using PANDA for PGR as-
sumes that observation of actions is deterministic, which is possible
only if the human agent provides exact information on the actions
being executed. As discussed in the previous section, manual com-
munication of actions in an RTSC system is almost impossible, and
can thus only be inferred from observed measurement data.

5 CONSIDERING PARTIAL OBSERVABILITY
IN PGR

... ...
... ...

... ...
... ...

... ...

... ...

Figure 2: Conditional dependencies between measurement
data and evidences, and between evidences and actions.

Many cognitive architectures on skilled human workers (e.g. a
pilot) adopt the cognitive Skill, Rule and Knowledge (SRK) archi-
tecture proposed by Rasmussen [32]. It is important to note that
on the Skill level, the human worker relies on the sensorimotor
capabilities to execute actions. While the methods for decomposing
abstract tasks in the HTN model can be compared to the contents
at the Knowledge-level in the SRK-model, actions in the HTN model
are comparable to the rules of the Rule-level. However, as sensors
used for monitoring the human agent cannot directly indicate their
actions (or “rules” in Rasmussen’s model), but only the effects the
human’s sensorimotors have on the world state, the human actor’s
current actions can only be inferred from raw measurement data
(see Figure 1 for measurement data available in an ultralight cock-
pit). However, a direct inference of a human’s deliberate action from
the mixed discrete-continuous measurements may not be always
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possible. We therefore introduce evidences as semantic evidences to
be inferred from raw measurement data. As an intuitive example,
“being near an airport” is an evidence inferred from the measured
position of the airplane. Together with the evidence “aligned with
airport” inferred from the measured heading, the action “fly to-
wards airport” can be inferred. Figure 2 depicts the conditional
dependencies between measurement data 𝑋𝑐

𝑖
and 𝑋𝑑

𝑖
, evidences 𝐸 𝑗 ,

actions 𝑂𝑘 and goal tasks 𝐺𝑙 using causal arrows.
Note that 𝐸 𝑗 ,𝑂𝑘 and𝐺𝑙 are all discrete random variables with bi-

nary outcomes (i.e. true = 1 or false = 0), of which a probabilistic
estimation from the discrete (and continuous) measurement data
𝑋𝑑
𝑖
or 𝑋𝑐

𝑖
is possible. The causal arrows represent dependency: if

there is no arrow pointing from node 𝐵 to node 𝐴, 𝑃 (𝐴|𝐵) = 𝑃 (𝐴).

5.1 Inferring a discrete random variable from
discrete or continuous data

Let 𝐴 denote a random event that assumes discrete values 𝑎 to be
inferred using 𝑁 given (conditionally independent) events {𝐵1 = 𝑏1,
𝐵2 = 𝑏2, . . .,𝐵𝑁 = 𝑏𝑁 }, with𝑏𝑛 assuming continuous or discrete val-
ues. The posterior probability of 𝐴 = 𝑎 given the events 𝐵1, . . . , 𝐵𝑁 ,
i.e. 𝑃 (𝐴 | 𝐵1, . . . , 𝐵𝑁 ) can be expressed as

𝑃 (𝐴 | 𝐵1, . . . , 𝐵𝑁 ) =
1

1 +
∏

𝑛 𝑃 (𝐵𝑛 |𝐴)𝑃 (𝐴)∏
𝑛 𝑃 (𝐵𝑛 |𝐴)𝑃 (𝐴)

. (1)

Equation 1 can be obtained using Bayes theorem:

𝑃 (𝐴 | 𝐵) = 𝑃 (𝐵 | 𝐴)𝑃 (𝐴)
𝑃 (𝐵) , (2)

and the total probability rule (T.P.R.):

𝑃 (𝐵) = 𝑃 (𝐵 | 𝐴)𝑃 (𝐴) + 𝑃 (𝐵 | 𝐴)𝑃 (𝐴), (3)

while considering conditional independence (C.I.) of the events
𝐵1 . . . , 𝐵𝑁 . More concretely,

𝑃 (𝐴 | 𝐵1, . . . , 𝐵𝑁 )
Bayes
=

𝑃 (𝐵1, . . . , 𝐵𝑁 | 𝐴) 𝑃 (𝐴)
𝑃 (𝐵1, . . . , 𝐵𝑁 )

C.I.
=

𝑃 (𝐵1 | 𝐴) · · · 𝑃 (𝐵𝑁 | 𝐴) 𝑃 (𝐴)
𝑃 (𝐵1, . . . , 𝐵𝑛, 𝐵𝑁 )

C.I.
=

T.P.R.

∏𝑛=𝑁
𝑛=1 𝑃 (𝐵𝑛 | 𝐴) 𝑃 (𝐴)∏𝑛=𝑁

𝑛=1 𝑃 (𝐵𝑛 | 𝐴) 𝑃 (𝐴) +
∏𝑛=𝑁

𝑛=1 𝑃
(
𝐵𝑛 | 𝐴

)
𝑃 (𝐴)

=
1

1 +
∏

𝑛 𝑃 (𝐵 |𝐴)𝑃 (𝐴)∏
𝑛 𝑃 (𝐵 |𝐴)𝑃 (𝐴)

.

(4)

Note that Equation 1 is tractable, as 𝑃 (𝐵 |𝐴) and 𝑃 (𝐵 |𝐴) can
be obtained using modelled likelihood functions, while the prior
probabilities can be assumed in practice as 𝑃 (𝐴) = 𝑃 (𝐴) = 0.5.
Table 1 shows a non-extensive list of distributions functions we
use to model the likelihood functions required for calculating the
following belief values.

5.2 Belief of an evidence
We define the belief distribution of an evidence 𝐸 = true as a
conditional probability formally represented as

bel(𝐸 = 1) = 𝑃 (𝐸 = 1 | 𝑋1 = 𝑥1, . . . , 𝑋𝐼 = 𝑥𝐼 ) , (5)

where 𝑋𝑖 = 𝑥𝑖 , with 𝑖 = 1, . . . , 𝐼 are the observed measurement data.
Using Equation 1 , the belief value bel(𝐸 = 1) can be determined if
the likelihood functions 𝑓 (𝑋𝑖 | 𝐸 = 1) are known.

5.3 Belief of an action being performed
Similarly, we define the belief distribution of an action 𝑂 = 1 being
performed as a probability conditioned on the measurement data
𝑋1 = 𝑥1, . . . , 𝑋𝐼 = 𝑥𝐼 :

bel(𝑂 = 1) = 𝑃 (𝑂 = 1 | 𝑋1 = 𝑥1, . . . , 𝑋𝐼 = 𝑥𝐼 ) . (6)

Using the total probability rule, the above equation can be ex-
tended as7

bel(𝑂 = 1)
= 𝑃 (𝑂 | 𝑋1, . . . , 𝑋𝐼 )

=
∑︁

𝐸1×...×𝐸𝐽 ∈{0,1}𝐽
𝑃 (𝑂 | 𝐸1, . . . , 𝐸 𝐽 ) · 𝑃 (𝐸1, . . . , 𝐸 𝐽 | 𝑋1, . . . , 𝑋𝐼 )

C.I.
=

∑︁
𝐸1×...×𝐸𝐽 ∈{0,1}𝐽

𝑃 (𝑂 | 𝐸1, . . . , 𝐸 𝐽 ) ·
∏

𝐸𝑗 ,𝑗 ∈{1,...,𝐽 }

𝑃 (𝐸 𝑗 | 𝑋1, . . . , 𝑋𝐼 )

=
∑︁

𝐸1×...×𝐸𝐽 ∈E

𝑃 (𝑂 | 𝐸1, . . . , 𝐸 𝐽 ) ·
∏

𝐸𝑗 ,𝑗 ∈{0,...,𝐽 }

𝑃 (𝐸 𝑗 | 𝑋1, . . . , 𝑋𝐼 ),

(7)

where E in the last line represents the set of all possible combina-
tions of outcomes of 𝐸1 × . . . × 𝐸 𝐽 , with 𝐸 𝑗 = 1, for all 𝑗 having a
causal arrow pointing to𝑂 , since 𝑃 (𝑂 | 𝐸1, . . . , 𝐸 𝐽 ) = 0, if there is a
𝑗 with a causal arrow pointing from 𝐸 𝑗 to𝑂 , such that 𝐸 𝑗 = 0. We as-
sume that 𝑃 (𝑂 | 𝐸1, . . . , 𝐸 𝐽 , 𝑋1, . . . , 𝑋𝐼 ) is equal to 𝑃 (𝑂 | 𝐸1, . . . , 𝐸 𝐽 )
since the measurement data 𝑋1, . . . , 𝑋𝐼 do not convey more infor-
mation on the conditional probability 𝑃 (𝑂 | 𝐸1, . . . , 𝐸 𝐽 ), if the
evidences are given.

To determine the belief value, Equations 1 can be used, provided
the probabilities of 𝑃 (𝐸 𝑗 | 𝑂𝑘 ) and the likelihood functions 𝑓 (𝑋𝑖 |
𝐸 𝑗 = 𝑒) are given.

5.4 Belief of a goal task
The PGR in Algorithm 1 (including the lines in blue) can be used
to determine the goal task(s), given the probabilistically inferred
actions. First, belief values of the evidences conditioned on the
measurement data are determined in Line 2, followed by the belief
values of the actions in Line 3. Subsequently, actions with belief val-
ues greater than a given threshold will be selected as a pre-filtering
step (see for loop from Line 5) and included in an observation file to
be used together with the domain and problem files by PANDA for
recognising the goal task(s) currently executed (see Line 12).

Lastly, the recognised goal task(s) will be attributed belief values
computed using Equation 8 (see Line 15). The belief values are

7For brevity of notation, discrete random variables 𝑌 with binary outcomes take the
outcome value 𝑌 = 1 if it is not specified. By definition, the compliment 𝑌 takes the
outcome value 0.
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name 𝑓 (𝑥), continuous distribution parameters remarks

Normal 1
𝜎𝑥
√

2𝜋
exp

(
− 1

2

(
𝑥−𝑥
𝜎𝑥

)2
)

mean, 𝑥 ; standard deviation,
𝜎𝑥

outcomes defined in 𝑥 ∈ R

Exponential

{
𝜆𝑒−𝜆𝑥 , for 𝑥 ≥ 0;
0, for 𝑥 < 0,

𝜆 > 0, rate parameter for outcomes defined in 𝑥 ∈ R≥0

Kumaraswamy 𝑎𝑏𝑥𝑎−1 (1 − 𝑥𝑎)𝑏−1 shape parameters, 𝑎, 𝑏 > 0 outcomes defined in 𝑥 ∈ [0, 1];

Uniform

{
1

𝑏−𝑎 for 𝑎 ≤ 𝑥 ≤ 𝑏

0 for 𝑥 < 𝑎 or 𝑥 > 𝑏
lower bound, 𝑎; upper
bound, 𝑏

has constant likelihood in given range

U-quadratic 𝛼 (𝑥 − 𝛽)2 𝛽 = 𝑏+𝑎
2 , where 𝑎 and 𝑏 are

lower and upper bounds
outcomes defined in 𝑥 ∈ [𝑎, 𝑏]; repre-
sents double-bounded continuous likeli-
hood; can represent variables with sim-
ilar likelihood at extremities

name 𝑃 (𝑘), discrete distribution parameters remarks

Bernoulli

{
𝑝 if 𝑘 = 1
𝑞 = 1 − 𝑝 if 𝑘 = 0

𝑘 = {0, 1} used for discrete random with binary
outcomes

Table 1: Likelihood functions modelled using Probability Density Functions (PDF) from [26, 28].

useful to guide the PAS on which goal task is most likely the pilot’s
intention.

bel(𝐺 = 1) = 𝑃 (𝐺 | 𝑋1, . . . , 𝑋𝐼 ) · 𝛿𝑃𝐺𝑅 (𝐺), (8)
The determination of 𝑃 (𝐺 | 𝑋1, . . . , 𝑋𝐼 ) is similar to the de-

termination of the belief value of an action, i.e. bel(𝑂 = 1). The
Knonecker-delta 𝛿𝑃𝐺𝑅 (𝐺) takes the value 1 if 𝐺 is recognised as a
goal task by Algorithm 1, otherwise 𝛿𝑃𝐺𝑅 (𝐺) = 0.

6 EMPIRICAL EVALUATION
The planning domain used for the empirical evaluation is adopted
from the Ultralight Cockpit domain8 [25].

Figure 3: Hierarchical task model for the sub-task "prepare
landing" of task "landing.

Figure 3 depicts an example HTNmodel, with prepare_landing
(i.e. prepare for landing) being the initial task network. Task names
in boxes are actions, i.e. primitive tasks that do not need further
decomposition and are directly executable by the human agent

8https://github.com/UniBwM-IFS-AILab/ValidationTests

(:method m_prepare_landing
:parameters (?noseDown - NoseDown
?throttleThirtyPercent - ThrottleThirtyPercent
?correctAirSpeed - CorrectAirSpeed ?airplane - Airplane
?landableLocation - LandableLocation ?flapLevelOne - FlapLevelOne
?alignedFinalState - AlignedFinalState)

:task (prepare_landing noseUp throttleThirtyPercent correctAirSpeed)
:precondition ( )
:subtasks(and

(task1 (keep_nose_down ?noseDown ))
(task2 (reduce_throttle ?throttleThirtyPercent ?noseDown))
(task3 (maintain_airspeed ?correctAirSpeed))
(task4 (lower_flaps_and_align ?flapLevelOne ?alignedFinalState)))

:ordering(and
(< task1 task2)
(< task2 task3)))

Figure 4: HDDL-encoding of themethod to decompose pilot’s
task to prepare for landing.

(i.e. the pilot). Other tasks are compound tasks to be decomposed
with a method, of which the encoding in the Hierarchical Domain
Definition Language (HDDL) [18] is shown in Figure 4. HDDL is
expressive and easy to comprehend. From Figure 4, it is directly
comprehensible that various subtasks are to be performed by pi-
lots while preparing for landing. These are to keep nose down, to
reduce throttle, to maintain current airspeed, and to lower flaps
while aligning to the landing stripe, as required in the pilot’s oper-
ating handbook [9]. The subtask lower_flaps_and_align is not
a primitive task, of which the method(s) to decompose is specified
separately in the HDDL file. Furthermore, the ordering of the sub-
tasks can be clearly formulated: the subtasks to be performed are
either totally ordered, partially ordered, or without order.

Table 2 shows the selected possible goal tasks (i.e. initial task
networks) for the empirical study in this work, and are grouped into
tasks performed under nominal and non-nominal flight conditions.
Nominal conditions denote normal flight conditions, while non-
nominal flight conditions denote adverse flight conditions. The
total- or partial-orderings of the tasks, as well as the (maximum)
number of actions are listed accordingly. These tasks were selected
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type ordering goal task max number of
actions

nominal partial land_airplane 9
none cruise 4
partial take_off 4
total fly_over_landable_location 3
none check_instruments 6

non- partial react to engine failure on ground 4
nominal partial react_to_engine_failure_during_take_off 5

partial react_to_engine_fire_on_ground 4
partial react_to_engine_fire_during_take_off 5
partial react_to_engine_fire_during_flight 6

Table 2: Selected tasks for empirical evaluation

discrete data continuous 1-d data 2-d data
lower flaps button current altitude fixation points
apply brakes button latitude/longitude
release brakes button throttle ratio
turn off ignition button roll ratio
turn on ignition button heading
master switch on button pitch ratio
switch fuel tanks button yaw ratio
turn off the fuel button airspeed

Table 3: Collected sensor data to generate evidence

to cover all the major tasks that a pilot might have to perform in
both nominal and non-nominal conditions, but are not exhaustive.
With the list of goal tasks in Table 2, there are more than 500
possible plans (i.e. sequences of actions).

6.1 Collecting measurement data
Table 3 shows the measurement data collected from various sen-
sors and cockpit instruments to recognise the pilot’s goal task. As
described in Section 5, and also depicted in Figure 2, actions of the
HTN model often cannot be inferred directly from the collected
measurement data. Therefore, we define evidences 𝐸∗ as intermedi-
ate random variables, of which the likelihood functions 𝑃 (𝑥 | 𝐸∗)
can be modelled. For intuitive illustrations, multiple examples will
be provided here. The likelihood function of a button being pressed
in the event the pilot presses on the button can be modelled by:

𝑃 (button_state | button_pressed) =
{

0, if button_pressed = 0
1, if button_pressed = 1

(9)
Similarly, the likelihood function can also be defined for continu-

ousmeasurement data. Consider the evidence𝐸 =getting_near_l-
andable_location (i.e. to get near a landing location). 𝐸 has two
outcomes (i.e. 𝑒 = 1 or 0). The likelihood function of obtaining
the measured distance 𝑥 given the evidence of getting near the
landable location 𝑓 (𝑋 = 𝑥 | 𝐸 = 1) can be modelled using the
Kumaraswamy distribution (see Figure 5). The modelled likelihood
functions will subsequently be used to compute the belief values
according to Equations 5, 7 and 8. In this work, we consider only
likelihood functions selected by domain-experts. However, there
exists a possibility that these likelihood functions be obtained using
learning algorithms to customise for individual behavior patterns.

The likelihood of the event the pilot is looking at a planar ob-
ject in the cockpit (e.g. the altimeter, the map display) given the
two-dimensional distances of the fixation points (obtained from

Figure 5: Likelihood functions and posterior probability for
the evidence getting near a landable location (in orange)
against the measured distance. The Kumaraswamy distri-
bution is used, with 3.5 km being the cut-off distance.

the eye-tracker) to the centroid of the region of interest (ROI) de-
limiting the object, can be modelled using a multi-variate nor-
mal distribution (see Table 1). The belief value of the evidence
𝐸 =looking_at_panel is symmetric around the centroid and has
a value of 1, while the value decreases as the fixation point lies
farther from the centroid. The PDF is parametrized in such a way
that all the points with a distance greater than 2.5 cm from the
centroid of the ROI have belief value smaller than 0.5 (size of ROI
is 10 cm2).

6.2 Experiment setup

Figure 6: Experiment setup.

Figure 6 shows the setup of the experiment, which is similar
to the setup in [21]. X-Plane, a widely used flight simulator with
realistic flight dynamics and an immersive simulation environment,
is used to simulate the Aerolite 103 aircraft model. Flight data
from X-Plane is communicated using ExtPlane9. The flight control
data, such as the throttle and yoke, are first sent to X-Plane and
then read through ExtPlane. Pilot fixation data is generated using

9https://github.com/vranki/ExtPlane
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Pupil Core10. The collected (time-stamped) data is saved in an SQL
database.

In each experiment, the test person is instructed to carry out:
i.) just an action and ii.) a goal task from Table 2 by the test con-
troller, and the instruction serves as the ground truth. It is assumed
that the test person is rational and goal-directed. The experiment is
carried out with two different test persons: the first test person is
experienced with the simulator, while the second is a novice. The
various data sources are collected during the experiments and then
processed later11. The data are processed to evaluate the inference
of actions and goal tasks from raw measurement data.

6.3 Evaluation
All evaluations are carried out using an Intel i7-5820K CPU @ 3.30
GHz with 32 gigabytes of RAM.

Figure 7: Action recognition comparison between experi-
enced and inexperienced test subjects.

First, the action inference is tested. For this, each test person is
instructed to carry out the actions included in the domain. This test
is carried out to evaluate the action recognition module. No time
limit is set, and the action to be performed is selected randomly.
The experiments and data are synchronised using an external time
stamp. This experiment is repeated 10 times for each action and
each test person. Figure 7 shows the comparison of statistically
obtained belief values for the instructed actions grouped according
to the respective type of measurement data the actions depend on
(i.e. there exists a causal link that can be traced back to at least one
type of measurement to the action). In the figure, the data group
"multiple-continuous data" refers to the actions, that are inferred by
combining multiple continuous data. The developed model outputs
sufficiently substantial belief values for the instructed actions.

Next, belief values of actions given the measurement data in
Table 3 are evaluated with a temporal resolution of 100 ms. The
choice of this temporal resolution is to ensure the real-time ca-
pability of the designed system. Figure 8 shows the belief values
of three representative detected actions in this experiment (i.e.

10https://pupil-labs.com/products/core/
11However, the implementation is compatible for use in real-time.

Figure 8: Belief value of selected actions relevant for task
"land airplane".

get_near_landable_location, keep_nose_down and lower_fl-
aps), and demonstrates that the belief value for an action varies dy-
namically over the course of the experiment. The action lower_fla-
ps is very clear-cut as the belief value increases immediately to 1
once the button to lower flaps is pressed (i.e. the evidence), which
is inferred only from a single measurement data (i.e. state of the
button). Similarly, the action get_near_landable_location, al-
though follows a continuous variation, also provides a clear increase
in value as it depends (indirectly) on two measurement data (i.e.
distance to the landable location, and height relative to the landable
location). However, the action keep_nose_down is associated with
a belief value that is more “inconclusive" than the other two actions.
This is due to the fact that the pilot needs to regulate the pitch
angle of the aircraft continuously and in incremental steps in the
course of the action to keep the nose of the aircraft down. While
calculating the belief value for the corresponding goal task, the
highest yet observed belief value for an action is taken.

The evaluation of goal recognition follows. This workflow is
explained using the result of the goal task "land airplane". First,
the test person is instructed to carry out this task. At any given
time, actions from the list of recognised actions, with a belief value
greater than the pre-defined threshold are selected. This observation
sequence serves as the input for the goal task recognition. Figure 9
shows the belief value of the task "land airplane". The belief value for
the goal task increases when a relevant action for the task is carried
out. These are seen as sudden jumps in belief value in Figure 9.

Statistical analysis was carried out to determine the maximum
belief value obtained over the course of execution of each goal task
in Table 2. A mean maximum belief value of 0.73 and a median
belief value of 0.70 were obtained, indicating that the probability
model is consistent for recognising the various goal tasks.

Since there are tasks that share the same actions, some tasks
are misidentified until the observed action prefix is unique to the
task being carried out. This is illustrated in Figure 10. Two task
react_to_engine_failure_on_ground and react_to_fire_on-
_ground have the same belief value for prefix length of three since
they share three actions between them, but once the prefix becomes
unique, the belief value of the former task increases while that
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Figure 9: Belief value over time for the goal task "land air-
plane".

of later stagnates. This relates to the worst-case distinctiveness
measure explained in [23] and should be considered in future work.

Figure 10: Belief value for goal task
react_to_fire_on_ground and react_to_engine_fail-
ure_on_ground, while the pilot was instructed to execute the
goal task react_to_fire_on_ground).

Figure 11 shows the time required by the plan recognition system
given the length of action sequence (prefix length) to detect the
corresponding task. For all totally-ordered, partially-ordered, and
tasks with no order, the PGR system is able to recognize the task
within 10−2 seconds. This time includes the I/O operation required
to interact with the PGR system. This is in line with the requirement
so that the system can be used in an online scenario. Note that the
dash in the box plot represents that only one data point is taken.
This is limited by the number of actions in goal tasks considered.

7 CONCLUSION AND FURTHERWORK
UL cockpits need to be more secure in the future, and for this, the
integration of PAS capable of providing contextual decision-making
support is essential. This paper presents a method to leverage HTN
models for PGR. The advantage of doing so is to exploit the already

Figure 11: Time taken for PGR with respect to prefix length
for different task ordering.

existing HTN models, which are predominantly used in providing
guidance (in form of plan suggestions) to the pilot.

Since the PGR requires a prefix of executed actions, which can
only be partially observed, we also developed a method to derive
the belief value of a recognised goal task. In the event a prefix of
executed actions leads to the recognition of multiple goal tasks, the
PAS will assume that the goal task with the most substantial belief
value is indeed the intended goal task. Although the method was
validated for the ultralight PAS use case, its transferability to other
RTSC systems is highly likely.

The presented method was empirically validated with human-
in-the-loop tests. Three key assumptions are made during the de-
velopment of the system:
• While executing a goal task, the pilot does not miss any
action in the HTN model.
• No multitasking is considered, i.e. the pilots do not execute
more than one goal task at the same time.
• The pilot is perfectly rational, i.e. the pilot performs the best
course of possible actions without error.

Especially in non-nominal situations, due tomental overload or time
criticality, the pilot may deviate from the behavior of a perfectly
rational agent. Since non-nominal situations are associated with
more errors, lifting the above assumptions is essential for future
works. A small sample size was used in this paper and should also
be increased in future work. Besides, this work only derives belief
values of the recognised goal tasks, but not the belief values of the
decomposition methods. The belief propagation from the lower
abstraction levels to the higher abstraction levels can be included
in the future into the HTN-planning framework.
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