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Introduction

Plan verification for hierarchical planning is hard!

It is NP-complete in general.

Contribution

We developed a SAT-based HTN plan verifier by adapting
data structures for solving HTN problems which can verify
plans for partial order (PO) HTN problems more efficient.
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HTN Planning
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A domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

A problem P = (D, cI , sI):

cI : The initial task.

sI : The initial state.
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PDTs and SOGs

Path Decomposition Trees (PDTs)
• A PDT of certain height K stores compactly all valid

decomposition trees of height up to K.

Solution Order Graphs (SOGs)
• A SOG stores the yields of all decomposition trees in a PDT

of certain height.

Solution Order Graph
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Procedure

Main Procedure

Starting with K = 1, we build a PDT of height K.

We check whether there exists a decomposition tree
in the constructed PDT which can lead to the plan
and all method preconditions are satisfied (by SAT).

If that is not the case, we increase K by 1 and
repeat the previous steps.

A method precondition can be compiled as a primitive task that is
ordered before all the remaining tasks in the method.
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Encoding

Encoding for constructing a PDT already exists.

Use a variable to represent the
mapping between an action in the
plan and a vertex in the SOG.

A vertex is activated if and only if
it is mapped to an action.

If a vertex is activated, the
decomposition tree to which the
vertex belongs must also be
activated.

Every activated vertex should be
mapped to an action (and vice
versa).
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Configurations

The benchmarks are plans generated by planners that
participated in the IPC 2020 on HTN Planning.

• The set contains 1211 valid plans and 138 invalid plans.

We manually added additional invalid plans to the
benchmark set.

• Most of the original invalid plans fail because of some
simple reasons.

We compared our new SAT-based verifier against the
current SOTA one based on planning.

• It has been shown that the planning-based verifier
outperforms all other existing ones.
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Experimental Results

Instances
SAT (Ours) Planning

Loose Tight SAT Progression

Satellite 269 269 269 269 269
Transport 219 219 219 219 141
Rover 171 171 171 171 163
Woodworking 162 162 162 162 162
Monroe (FO) 130 130 130 130 130
Monroe (PO) 103 103 103 103 103
Barman-BDI 68 63 63 58 58
UM-Translog 57 57 57 57 57
PCP 31 31 31 31 31
Zenotravel 1 1 1 1 1

1211 1206 1206 1201 1115

Instances
SAT (Ours) Planning

Loose Tight SAT Progression

Satellite 66 66 66 23 66
Transport 64 54 64 18 33
UM-Translog 59 59 59 14 59
Rover 53 41 53 6 47
Monroe (FO) 24 24 24 1 24
Woodworking 21 21 21 0 21
Barman-BDI 18 18 18 0 16
Monroe (PO) 18 18 18 2 18
PCP 12 12 12 0 12
Zenotravel 4 4 4 0 4

339 317 339 64 300

7.8



Introduction Background Verification Evaluation Conclusion

Conclusion

In this paper, we developed a new SAT-based HTN plan verifier.

It exploits PDTs and SOGs from the SAT-based HTN
problem solver.

It outperforms the SOTA planning-based verifier in
verifying plans for POHTN problems.
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