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Abstract

In this paper we study the computational complexity of sev-
eral reasoning tasks centered at the bounded plan existence
problem. We do this for standard classical planning and hi-
erarchical task network (HTN) planning and each for the
grounded and the lifted representation. Whereas bounded
plan existence complexity is known for classical planning, it
has not been studied yet for HTN planning. For plan verifi-
cation, results were available for both formalisms except the
lifted representation of HTN planning. We will thus present
the lower bound and the upper bound of the complexity of
plan verification in lifted HTN planning and provide novel
insights into its grounded counterpart, in which we show that
verification is not just NP-complete in the general case, but
already for a severely restricted special case. Finally, we show
the computational complexity concerning the optimality of a
given plan, i.e., answering the question whether such a plan
is optimal, and discuss its connection to the bounded plan ex-
istence problem.

Introduction

Automated planning is the task of finding a course of actions
called a plan which achieves a certain goal. An immense ef-
fort has been devoted to studying the computational com-
plexity of the plan existence problem in the context of both
non-hierarchical (classical) planning (Erol, Nau, and Sub-
rahmanian 1991; Bylander 1994; Helmert 2006; Bäckström
and Jonsson 2011) and hierarchical planning (Erol, Hendler,
and Nau 1996; Geier and Bercher 2011; Alford et al. 2014;
Alford, Bercher, and Aha 2015) which is to decide whether
a planning problem has a solution. In contrast, the number
of research endeavors on the complexity of finding an opti-
mal plan is relatively small. Despite that many approaches
for finding optimal plans have been developed for both clas-
sical planning (Karpas and Domshlak 2009; Pommerening
et al. 2014) and hierarchical planning (Bercher et al. 2017;
Behnke, Höller, and Biundo 2019; Behnke and Speck 2021),
the complexity results only exist in the classical setting but
not in the hierarchical one.

We will discuss the complexity of several problems cen-
tered at the bounded plan existence problem (which is a
standard way of framing the problem of finding an optimal
solution as a decision problem). Our discussion starts with
the plan verification problem, which serves as the basis for

the investigation of the bounded plan existence problem, and
ends up with the plan optimality verification problem and its
extension, the bounded plan optimality verification problem.
Plan optimality verification is to verify whether a plan is an
optimal solution to a planning problem, and its bounded ver-
sion is to check whether the length of a given plan is not far
away from the length of an optimal one by some bound.

We will investigate some general properties of these prob-
lems and discuss their complexity results in the specific con-
text of classical planning (Ghallab, Nau, and Traverso 2004)
and Hierarchical Task Network (HTN) planning (Bercher,
Alford, and Höller 2019), which is the most commonly used
hierarchical planning (Ghallab, Nau, and Traverso 2004;
Bercher, Alford, and Höller 2019) formalism. One impor-
tant reason for discussing all these results, which are sum-
marized in Tab. 1, is that they can serve as a reference for
future research endeavors in related disciplines.

Concretely, for plan verification, although the complexity
is well-developed for classical planning and grounded HTN
planning (Behnke, Höller, and Biundo 2015), no investiga-
tions have been done for lifted HTN planning. Here, we will
present the lower bound and the upper bound of the com-
plexity of lifted HTN plan verification, which turns out to be
significantly harder compared to its grounded counterpart.

For the bounded plan existence problem, we will discuss
its complexity in terms of both the encoding size and the
magnitude of the bound. For this, we follow the methodol-
ogy by Bäckström and Jonsson (2011) which encodes the
bound in binary and in unary, respectively. Lastly, we will
discuss the connection between the bounded plan existence
problem and the plan optimality verification problem and
present the complexity results for the latter.

Background

We start by presenting the notations that will be used
throughout the paper together with the planning formalisms
on which the complexity results are developed.

Size of Objects Given an arbitrary object x, e.g., x can be
a number, a problem instance, etc., we say that the size of x,
written ∥x∥, is the length of a binary string which encodes
the object x. When studying the complexity of a problem,
accounting for the size of the problem is crucial because the
runtime of a certain algorithm (operation) for the problem
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Plan Verification k-length Plan Existence Plan Optimality Verification Bounded Plan Optimality Verification
k in binary k in unary plan given only plan length given
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PSPACE-complete NP-complete coNP-complete coNP-complete PSPACE-complete

(Bylander 1994) (Bäckström and Jonsson 2011) Prop. 3 Prop. 4 Prop. 5
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NEXPTIME-complete NP-complete coNP-complete coNP-complete coNEXPTIME-complete

(Erol, Nau, and Subrahmanian 1991) Thm. 4 Prop. 3 Prop. 4 Prop. 5
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nd NP-complete NEXPTIME-complete NP-complete coNP-complete coNP-complete coNEXPTIME-complete
Prop. 2 Thm. 3 Thm. 5 Prop. 3 Prop. 4 Prop. 5
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PSPACE-hard PSPACE-hard PSPACE-hard PSPACE-hard
Thm. 1, Cor. 1 NEXPTIME-complete Thm. 6 Prop. 3 Prop. 4 coNEXPTIME-complete

In NEXPTIME Thm. 3 In NEXPTIME In coNEXPTIME In coNEXPTIME Prop. 5
Thm. 2 Thm. 6 Prop. 3 Prop. 4

Table 1: Summary of the complexity results and the respective theorems. Note that we demand here that a solution to an HTN planning
problem is an action sequence, which is different from the standard definition of solutions where a solution is a primitive task network. The
plan optimality verification problem and the bounded plan optimality verification problem with the plan given explicitly are semantically
equivalent, and they are the complement of the bounded plan existence problem with the bound given in unary. The bounded plan optimality
verification problem with only the plan length given is the complement of the bounded plan existence problem. As a special case, plan
optimality verification with only the length of a plan being given is equivalent to setting the bound to zero in the bounded plan optimality
verification (where the plan is also not given explicitly), and hence it is also the complement of the bounded plan existence problem (cf.
Prop. 6). NP-completeness of plan verification in grounded HTN planning was proved (Behnke, Höller, and Biundo 2015). We show that it
holds even in a severely restricted case.

is measured with respect to the problem size. Notably, the
size of an object varies in how it is encoded, e.g., a number
can be encoded either in binary or in unary, which can affect
the complexity of the problem. As an example, the unary
encoding of 5 is “11111”, and its binary encoding is “101”.

Grounded Classical Planning A grounded classical plan-
ning problem is a tuple Π = (D, sI , g) where D = (F,A, α)
is called the domain of Π. F is a (finite) set of propositions,
A is a (finite) set of action names (or actions for short), and
α : A → 2F × 2F × 2F is a function mapping each action
a ∈ A to its precondition, add list, and delete list, written
α(a) = (prec(a), add(a), del(a)). sI ∈ 2F is the initial
state of Π and g ⊆ F the goal description.

Generally speaking, the objective of (grounded) classical
planning is to find an action sequence which turns the ini-
tial state into another state where the goal description is sat-
isfied. Formally, a state s in classical planning is a set of
propositions, i.e., s ∈ 2F . Applying an action a ∈ A in a
state s will result in a new state s′ with s′ = (s \ del(a)) ∪
add(a). An action a is applicable in a state s if prec(a) ⊆ s.
In other words, the precondition of a is satisfied in s. For
convenience, we write s →a s′ to indicate that the action a
is applicable in the state s, and the state s′ is obtained by ap-
plying a in s. Further, given a state s and an action sequence
π = ⟨a1 · · · an⟩ (n ∈ N), we write s →∗

π s′ for some state s′

to indicate that s′ is obtained by applying π in s, that is, there
exists a state sequence ⟨s0 · · · sn⟩ such that s0 = s, sn = s′,
and for each 1 ≤ i ≤ n, si−1 →ai

si. Consequently, a solu-
tion to a (grounded) classical planning problem is an action
sequence π such that sI →∗

π s′ for some state s′ and g ⊆ s′.

Lifted Classical Planning The lifted classical planning
formalism is an extension of the grounded one and is defined
on the alphabet of a first-order language Σ = (V,O,R)
where V is a set of variables, O a set of objects, and R
a set of predicates. A predicate p ∈ R is of the form
p = P (v1, · · · , vn) for some n ∈ N where P is called
the predicate’s name, and vi ∈ V for each 1 ≤ i ≤ n.

Substituting every variable in a predicate with an object is
called grounding the predicate, and it is characterized by a
variable substitution function ϱ : V → O. More concretely,
given a variable substitution function ϱ, grounding the predi-
cate p according to ϱ results in the grounded predicate, writ-
ten pJϱK, with pJϱK = P (ϱ(v1), · · · , ϱ(vn)). In particular,
a grounded predicated is equivalent to a proposition in the
grounded classical planning formalism.

A lifted planning problem is again a tuple Π = (D, sI , g)
with D = (Σ,A, α) being its domain. In the lifted setting,
A is a set of action schemas. An action schema, a ∈ A, also
consists of an action name and a tuple of variables, writ-
ten A(v1, · · · , vn) (n ∈ N) with A being the action name.
α maps an action schema to its precondition, add list, and
delete list, written α(a) = (prec(a), add(a), del(a)), each
of which is a set of predicates P (vi1 , · · · , vij ) such that
vir ∈ {v1, · · · , vn} for each r ∈ {1, · · · , j}.

An action schema a can also be grounded into an action
a in the grounded setting by a variable substitution func-
tion ϱ, written a = aJϱK. Notably, when grounding an ac-
tion schema, all predicates in its precondition, add list, and
delete list are grounded simultaneously by the same variable
substitution function.

Lastly, sI and g are two sets of grounded predicates (i.e.,
propositions) which are the initial state and the goal descrip-
tion of Π, respectively. A solution to Π is an action se-
quence π = ⟨a1 · · · an⟩ such that sI →∗

π s′ for some state s′

with g ⊆ s′, and for each ai with 1 ≤ i ≤ n, there exist an
action schema a ∈ A and a variable substitution function ϱ
such that ai = aJϱK.

Notably, one can obtain a grounded planning problem Π
from a lifted one Π by grounding every predicate and action
schema with all possible variable substitution functions, and
the problem Π produced in such a way has the same solution
set as Π. One important remark is that ∥Π∥ is exponential in

∥Π∥, that is, ∥Π∥ = O(2∥Π∥q

) for some constant q ∈ N.

Grounded HTN Planning We now reproduce the for-
malism of the grounded Hierarchical Task Network (HTN)
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planning (Bercher, Alford, and Höller 2019). A grounded
HTN planning problem Π is a tuple (D, sI , tnI , g) with
D = (F,A, C,M, α) being its domain. A grounded HTN
planning problem is an extension of a grounded classical one
in the sense that F , A, α, sI , and g are defined in the same
way as their counterparts in the classical setting. An action
a ∈ A in HTN planning is also called a primitive task. Two
components, C and M, which are not in the classical for-
malism, are the set of compound tasks and of methods, re-
spectively. A method (c, tn) ∈ M decomposes a compound
task c ∈ C into a so-called task network tn, which is es-
sentially a partial order multiset of primitive and compound
tasks. Formally, a task network tn is a triple (T,≺, γ) where
T is a set of identifiers, ≺ ⊆ T × T is a partial order de-
fined over T , and γ : T → A ∪ C is a function that maps
each identifier to a task. Two task networks, tn = (T,≺, γ)
and tn′ = (T ′,≺′, γ′), are said to be isomorphic, written
tn ∼= tn′, if there exists a bijective mapping φ : T → T ′

such that γ(t) = γ′(φ(t)) for any t ∈ T , and for any
t, t′ ∈ T , (t, t′) ∈ ≺ iff (φ(t), φ(t′)) ∈ ≺′. The last compo-
nent tnI in Π is the initial task network.

The notion of decomposing a compound task can also
be extended to decomposing a task network. A task net-
work tn = (T,≺, γ) is decomposed into another one
tn′ = (T ′,≺′, γ′) by some method m = (c, tn†), writ-
ten tn ⇒m tn′, if there exists an identifier t ∈ T and a
task network tn∗ = (T ∗,≺∗, γ∗) with tn∗ ∼= tn† such that
1) T ∗ ∩ T = ∅, 2) γ(t) = c, 3) T ′ = (T \ {t}) ∪ T ∗,
4) γ′ = (γ \ {(t, c)})∪γ∗, and 5) ≺′ = (≺\≺t)∪≺∗ ∪≺δ

with ≺t = {(t′, t) | (t′, t) ∈ ≺}∪{(t, t′) | (t, t′) ∈ ≺}, i.e.,
≺t is the set of all ordering constraints in tn that are asso-
ciated with t, and ≺δ = {(t1, t2) | t2 ∈ T ∗, (t1, t) ∈ ≺} ∪
{(t2, t1) | t2 ∈ T ∗, (t, t1) ∈ ≺}, i.e., ≺δ specifies the posi-
tion of tn∗ in tn′ with respect to the task t replaced by it.
Further, let tn and tn′ be two task networks and m a se-
quence of methods. We use tn ⇒∗

m tn′ to indicate that tn′

is obtained from tn by applying m.

Like classical planning, (grounded) HTN planning is also
to find an action sequence (i.e., a plan) which turns sI into
a state satisfying g. However, in HTN planning, such a plan
must be obtained from the initial task network by decompo-
sitions. Concretely, a plan π is a solution to an HTN planning
problem Π if sI ⇒∗

π s with g ⊆ s for some state s, and there
exists a task network tn = (T,≺, γ) such that tnI ⇒∗

m tn
for some method sequence m, and tn has a linearization tn
that forms π. A linearization tn = ⟨t1 · · · t|T |⟩ of tn is a to-

tal order of T which respects ≺, and by tn forming π, we
mean that π = ⟨γ(t1) · · · γ(t|T |)⟩. For convenience, we use

γ(tn) to denote the task sequence formed by tn. Please note
that there is a minor difference compared to standard HTN
literature (Bercher, Alford, and Höller 2019; Erol, Hendler,
and Nau 1996) in our solution definition. In our definition,
a solution is an action sequence, which we argue makes the
most sense. In standard literature, a solution is a primitive
task network having an executable linearization.

Lifted HTN Planning A lifted HTN planning problem is
a tuple Π = (D, sI , tnI , g) with D = (Σ,A, C,M, α) be-
ing its domain where Σ = (V,O,R), A, and α are de-

fined in the same way as that in lifted classical planning.
Every action schema is also called a primitive task schema.
C is now a set of compound task schemas and M a set of
method schemas. A compound task schema c ∈ C is simply
a compound task name together with a tuple of variables. A
method schema m is a tuple (c, tn) where c is a compound
task schema and tn a task network schema. A task network
schema is again a tuple (T,≺, γ) where T and ≺ are iden-
tical to those in a grounded task network, and γ maps each
identifier to a task schema.

A task, task network, or method schema x can again be
grounded by some variable substitution function ϱ : V → O,
written xJϱK. When grounding a task network schema tn

with a substitution function ϱ, all task schemas in tn are
grounded simultaneously by ϱ, and for any method schema
m = (c, tn) with mJϱK = (cJϱK, tnJϱK). A grounded task
schema and a grounded method schema are equivalent to a
task and a method in the grounded setting, respectively.

sI and g are again the initial state and the goal descrip-
tion consisting of propositions, and tnI is the grounded ini-
tial task network. An action sequence π is a solution to a
lifted HTN planning problem if sI →∗

π s for some state s
with g ⊆ s, and there exists a grounded method sequence
m = ⟨m1 · · ·mn⟩, n ∈ N, such that for each 1 ≤ i ≤ n,
there exists a method schema m ∈ M with mJϱK = mi for
some ϱ, and tnI ⇒∗

m tn for some primitive grounded task
network tn which possesses a linearization forming π.

Similar to lifted classical planning, one could also ground
a lifted HTN planning problem without changing its solution
set, and the size of the grounded problem is again exponen-
tial in that of the lifted one.

Proposition 1. Let Π be a lifted (classical or hierarchical)
planning problem and Π its grounded counterpart. Then it
holds that ∥Π∥ = O(2∥Π∥q

) for some constant q ∈ N.

Plan Verification

Having presented all planning formalisms involved in this
paper, we move on to discuss the complexity results for the
plan verification problem, which is to decide, given a plan-
ning problem and a plan, whether the plan is a solution to
the planning problem.

The complexity results for classical planning are obvi-
ous. In the grounded setting, a plan can clearly be validated
in polynomial time by checking whether it is executable
and satisfies all goals. This is well-known and exploited by
verifiers like VAL (Howey, Long, and Fox 2004). Given a
ground plan but a lifted problem description, the problem
gets slightly more complicated because for each action in the
plan we need to check whether it can be created by ground-
ing some lifted action schema. This can easily be checked
in polynomial time (just match constants to the respective
variables). As a result, the plan verification problem for both
grounded and lifted classical planning is in P.

In contrast, the plan verification problem in HTN planning
is more computationally expensive. Previous works have al-
ready shown that it is already NP-complete in the grounded
setting (Behnke, Höller, and Biundo 2015; Bercher, Lin, and
Alford 2022). Those investigations rely on the standard def-
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inition of solutions being task networks that possess some
executable linearization, whereas we define such a lineariza-
tion as the solution itself. In fact, even with our solution cri-
teria, HTN plan verification is still NP-complete in grounded
HTN planning (Behnke, Höller, and Biundo 2015, Thm. 2).

The existing hardness proof (Behnke, Höller, and Biundo
2015) for the verification problem (in the context of our defi-
nition of solutions) relies on finding a decomposition hierar-
chy, i.e., hardness of the problem adheres to decomposition
that results in the given plan. We can further improve this re-
sult by showing that NP-hardness already holds even if the
initial task network is primitive. This follows trivially from
the fact that it is NP-complete to decide whether an action
sequence is a linearization of a partial order task network
(Lin and Bercher 2023).

Proposition 2. The grounded HTN plan verification prob-
lem is NP-complete. This holds even in the special case
where the initial task network of the given planning prob-
lem is primitive.

Notably, as a special case, the plan verification problem
in the context of total order (TO) HTN planning is poly-
time decidable (Behnke, Höller, and Biundo 2015). A TO-
HTN planning problem is such that the initial task network
is totally ordered, and every method decomposes a com-
pound task into a total order task network as well. Solving a
TOHTN planning problem is computationally cheaper than
solving a partial order one, and many theoretical investiga-
tions into properties of TOHTN planning have been made
which have great potential to be utilized to solve TO prob-
lems more efficiently (Olz, Biundo, and Bercher 2021). The
poly-time decidability of TOHTN plan verification holds be-
cause a (grounded) TOHTN planning problem is essentially
equivalent to a context-free grammar (CFG) (Höller et al.
2014), and hence, the plan verification problem is equivalent
to the parsing problem in TOHTN planning. Bearing this
connection, many efficient TOHTN plan verifiers (Barták
et al. 2021; Lin et al. 2023) have been developed by exploit-
ing CFG parsers.

Now we extend our investigation from the grounded set-
ting to the lifted one. Note that in the lifted setting, the plan
to be verified is still grounded, but the planning problem is
represented in the lifted way. Unlike the case in classical
planning, hardness of the plan verification problem increases
dramatically in lifted HTN planning. Concretely, we will
show that plan verification is already PSPACE-hard even
for lifted TOHTN planning.

Theorem 1. The plan verification problem in lifted TOHTN
planning is PSPACE-hard.

Proof. We reduce from the plan existence problem in
grounded classical planning. Suppose Π = (D, sI , g) with
D = (F,A, α) is a grounded classical planning problem.
For convenience, we assume that, without loss of generality,
F = {p1, · · · , pn} with n ∈ N and g =

{

pi1 , · · · , pij
}

.
The lifted HTN planning problem we are to construct has
only two objects, namely, 0 and 1. At the central of the re-
duction is the compound task schema c which is of the form

c = State(x1, · · · , xn, v0, v1)

with n = |F |. Each xi with 1 ≤ i ≤ n represents the cor-
responding pi ∈ F . Thus, a grounded version of the schema
c encodes a state. Our construction will ensure that v0 is
always grounded to 0 and v1 to 1 in decomposition, which
is useful for simulating state transitions (and which can be
done by the construction of the initial task network). More
concretely, we will construct method schemas that decom-
pose c to encode actions (in the given classical problem).
For each action a ∈ A, we construct a method schema ma

which decomposes the task schema

State(x′
1, · · · , x

′
n, v0, v1)

into another one State(x∗
1, · · · , x

∗
n, v0, v1) such that for

all 1 ≤ i ≤ n, x′
i = v1 if pi ∈ prec(a), x∗

i = v0 if pi ∈
del(a), x∗

i = v1 if pi ∈ add(a), and x′
i = x∗

i if none of
the previous holds. Intuitively, all x′

i’s with x′
i = v1 together

enforce that the precondition of a must hold (because we
will ensure that v1 can only be grounded to 1), and similarly,
those x∗

i ’s with x∗
i = v1 (resp. x∗

i = v0) enforce that the
respective propositions should be added (resp. deleted).

As an example for the construction, consider a grounded
classical problem which has three propositions {p1, p2, p3}
and three actions {a1, a2, a3}. The precondition and effects
of each action are depicted in the most left column of Fig. 1
(inside the box labeled with construction). Those on the left
side of an action are preconditions, and those on the right
are effects. Each effect with a negation symbol in front of
it (e.g., ¬p1 in the action a1) is in the delete list of the re-
spective action, otherwise it is in the add list. On the right
side of each action is the corresponding method schema that
encodes it. For instance, the method schema with respect to
a1 decomposes the task schema

State(v1, x2, x3, v0, v1)

into State(v0, x2, v1, v0, v1). The first v1 in the decom-
posed task schema is changed to v0 because the proposition
p1 is in the delete list of a1, and x3 becomes v1 because p3
is in the add list. x2 is unchanged because the execution of
a2 will not affect p2.

Having simulated each action, we now encode the initial
state sI of the classical problem and enforce that the param-
eters v0 and v1 of c can only be grounded to 0 and 1 in
decomposition, respectively. This is done by the construc-
tion of the initial task network of the HTN problem, which
consists solely of one grounded compound task:

State(y1, · · · , yn, 0, 1)

where for each i with 1 ≤ i ≤ n, yi = 1 if the respective pi
is in sI , otherwise, yi = 0. By letting v0 = 0 and v1 = 1 in
the initial task, we enforce that the values of those two vari-
ables cannot be changed in decomposition, because in each
method schema we construct, the variables v0 and v1 are
always inherited down from the task schema to be decom-
posed to the subtask schema. Hence, the correctness of our
construction for simulating executions of actions follows.

Recall the classical problem presented in Fig. 1, the right
side of the figure illustrates how the decomposition hierar-
chy simulates the actions’ executions, using our construction
of method schemas. Concretely, assume that the initial state
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State(1, 0, 0, 0, 1)sI = {p1}

State(v0, x2, v1, v0, v1)

State(v1, x2, x3, v0, v1)
ma1

v0 7→ 0, v1 7→ 1
x2 7→ 0, x3 7→ 0

State(0, 0, 1, 0, 1)

State(v1, x2, v1, v0, v1)

State(v1, v1, v1, v0, v1)

ma2
State(x1, x2, v1, v0, v1)

State(v1, x2, v1, v0, v1)

ma3

v0 7→ 0, v1 7→ ×
x1 7→ 1, x2 7→ 0

v0 7→ 0, v1 7→ ×
x2 7→ 0

· · · · · ·

a1
p1

p3

¬p1
State(v0, x2, v1, v0, v1)

State(v1, x2, x3, v0, v1)
ma1

a2

p1

p3

p2
State(v1, v1, v1, v0, v1)

State(v1, x2, v1, v0, v1)
ma2

a3
p3 p1

State(v1, x2, v1, v0, v1)

State(x1, x2, v1, v0, v1)
ma3

Construction

Figure 1: An example of using a decomposition hierarchy to simulate actions’ executions in a classical planning problem. The
left side shows how each action is encoded by a method schema, and the right side shows the decomposition.

of the classical problem is {p1}. This results in the grounded
initial compound task:

State(1, 0, 0, 0, 1)

because only p1 is true in the state. a1 is the only action
that is applicable in the initial state. As a consequence, only
the method schema ma1

has a corresponding grounded ver-
sion that can decompose the initial compound task. Specif-
ically, for the action a2, since it requires p3 which is not
in the initial state, it leads to a contradiction that v1 should
be grounded to both 0 and 1 simultaneously. The sim-
ilar situation also happens to a3. The decomposition of
the initial compound task results in a new compound task
State(0, 0, 1, 0, 1) which encodes the state obtained by ap-
plying a1 in the initial state.

Lastly, we will encode the goal description and the crite-
rion that the goal must be satisfied. To this end, we first con-
struct a method schema which decomposes the task schema
State(x1, · · · , xn, v0, v1) into a sequence ⟨c′1 · · · c

′
n⟩ of

compound task schemas with

c′i = Pi(xi)

for each 1 ≤ i ≤ n. The compound task schema Pi(x) can
either be decomposed into an action schema

ai = ValuePi(x)

or into an empty task network. The precondition, positive
effects, and negative effects of ai are all empty. We can view
a grounded version of ai as an assertion of the value of the
proposition pi in a state. If ai is grounded by letting x = 1,
it means that pi holds in the respective state, and vice versa.

The plan to be verified should be ⟨ai1 , · · · , aij ⟩ where
aik = ValuePik(1) for each 1 ≤ k ≤ j (recall that
each pik is a proposition in the goal). This is to say that for
each proposition in the goal, its truth value must be asserted.
Since each task schema Pi(x) can be decomposed into an
empty task network no matter what object the variable x is
grounded to, we can ensure that any action that is not in the

constructed plan can be easily eliminated. Thus, the classi-
cal planning problem has a solution iff the constructed plan
is a solution to the HTN planning problem.

A by product of the presented proof is that it shows the ex-
pressive power of a decomposition hierarchy, i.e., a decom-
position hierarchy can carry out certain semantics. For in-
stance, Fig. 1 shows how the semantics of actions is encoded
by a decomposition hierarchy. Thus, we also believe that the
proof here can serve as a counter-argument for the incorrect
commonsense that decomposition hierarchies in hierarchical
planning can only serve as a guidance for finding plans but
do not carry any information (semantics).

As a simple corollary of Thm. 1, PSPACE-hardness holds
as well in general lifted HTN planning.

Corollary 1. The plan verification problem in lifted HTN
planning is PSPACE-hard.

For membership, one can observe that the lifted HTN plan
verification problem is in NEXPTIME. This is because for
any lifted HTN planning problem Π and a plan π, we can
first ground Π into a grounded one Π in exponential time
according to Prop. 1. Since the grounded HTN plan verifica-
tion problem is in NP, we can non-deterministically verify
whether π is a solution to Π in polynomial time with respect
to ∥Π∥ and ∥π∥. It thus follows that whether π is a solution
to Π can be checked non-deterministically in exponential
time with respect to ∥Π∥.

Theorem 2. The plan verification problem in lifted HTN
planning is PSPACE-hard and is in NEXPTIME.

In fact, one can recognize that plan verification for lifted
TOHTN planning is actually in EXPTIME. This is because
the grounded TOHTN plan verification problem is in P, and
hence, after grounding a lifted problem Π into a grounded
one Π, we can verify deterministically whether a given plan
is a solution in polynomial time with respect to ∥Π∥, which
is exponential time with respect to ∥Π∥, e.g., by using the
CYK algorithm for TOHTN problems (Lin et al. 2023).
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Bounded Plan Existence
We now move on to discuss the complexity of the bounded
(k-length) plan existence problem, which is to decide, given
a planning problem and a k ∈ N, whether there is a solu-
tion plan π to the problem of length up to k. We start with
some general properties of this problem and then discuss its
complexity in specific planning formalisms.

One insight into this problem is that it can always be de-
cided non-deterministically by a two-steps procedure inde-
pendent of any planning formalism, namely, we can first
guess a plan of length up to the bound k and then verify
whether this plan is a solution to the given planning problem.
Further, notice that since the bound k is normally encoded in
binary, guessing a plan that is bounded in length by k would
thus require exponential time complexity. On top of this ob-
servation, we can obtain two properties which assert NEXP-
TIME-membership of the bounded plan existence problem
for a planning formalism if these two properties hold in that
formalism. Concretely, the two properties are as follows:
1) An action can be encoded in polynomial bits with respect

to the size of the planning problem. This thus implies that
guessing a plan of length up to the bound k can be done

in time O(2∥k∥
q

) for some constant q ∈ N.
2) Verifying whether a plan is a solution to the planning

problem can be done non-deterministically in exponen-
tial time with respect to the encoding size of the plan-
ning problem and of the plan, i.e., the plan verification
problem is in NEXPTIME.

These two properties together ensure that guessing and ver-
ifying a plan can be done in exponential time.

As a result, the bounded plan existence problem in both
classical and HTN planning, including both the grounded
and the lifted setting, is in NEXPTIME. The problem is
actually PSPACE-complete (Erol, Nau, and Subrahmanian
1991; Bylander 1994) in grounded classical planning (note
that this is not a contradiction because PSPACE is a subset
of NEXPTIME), making it as hard as its unbounded version
(Bylander 1994). NEXPTIME-completeness of the prob-
lem in lifted classical planning has also been proved by Erol,
Nau, and Subrahmanian (1991), and its unbounded counter-
part in the lifted setting is EXPSPACE-complete. For HTN
planning, we will show that NEXPTIME-hardness holds as
well in both the grounded and lifted HTN planning.

Theorem 3. The k-length (bounded) plan existence problem
for both grounded and lifted HTN planning is NEXPTIME-
complete.

Proof. Membership follows from Prop. 2 and Thm. 2. For
hardness, we first show that the problem is NEXPTIME-
hard in the grounded setting. We reduce from the grounded
acyclic HTN plan existence problem. The basis for such a
reduction is the fact shown by Behnke et al. (2016) that for
any acyclic HTN planning problem, the length of a solution
is bounded by an exponential number k∗ with

k∗ =

(

max
(c,(T,≺,γ))∈M

|T |

)|A|

Hence, by letting k = k∗, deciding whether an acyclic HTN
planning has a solution is equivalent to deciding whether that

acyclic HTN problem has a solution bounded in size by k.
NEXPTIME-hardness of the bounded plan existence prob-
lem in grounded HTN planning follows immediately. Since
a grounded HTN problem can be viewed as a special case of
a lifted one, it follows that NEXPTIME-hardness holds as
well in lifted HTN planning.

Encoding the Bound in Unary Our discussion about the
k-length plan existence problem so far is restricted to the
case where the bound k is given in binary. That is, the encod-
ing size of k is growing exponentially while its magnitude
is growing polynomially. This however might contradict the
intention of giving such a bound. More concretely, in prac-
tice, when a user uses a planner to find a plan of length up
to a certain bound, the user is actually concerned with the
magnitude of this bound but not the encoding size.

Bearing this scenario, Bäckström and Jonsson (2011) in-
vestigated the k-length plan existence problem from a dif-
ferent aspect where they developed its complexity with re-
spect to the magnitude of the bound. This is done by assum-
ing that the bound is encoded in unary. The authors studied
this for finite functional planning (FFP) and proved its NP-
completeness. They further justified that a grounded classi-
cal planning problem can be reduced to an FFP problem in
poly-time (Bäckström and Jonsson 2011, Prop. 1) (note that
this does not hold for the lifted formalism), and hence, NP-
completeness also holds in grounded classical planning.

We now extend the result by Bäckström and Jonsson to
lifted classical planning and HTN planning. Notice first that
when k is given in unary, we can again identify two proper-
ties of a planning formalism which assert NP-membership
and which are similar to the previous two that assert NEX-
PTIME-membership. Concretely, for any planning formal-
ism, its k-length plan existence problem with k given in
unary is in NP if the formalism holds the following two
properties: 1) a plan step can be encoded in polynomial bits,
and 2) the plan verification problem for the formalism is
in NP. This is because the first property now implies that
guessing a plan of length up to the bound k can be done
in polynomial time with respect to the size of the planning
problem and k, due to the unary encoding of k. Conse-
quently, the time complexity of the entire guess-and-verify
procedure can be done in polynomial time.

Hence, NP-membership in lifted classical planning and
grounded HTN planning follows immediately because these
formalisms preserve the two properties. In particular, NP-
hardness in lifted classical planning holds as well due to NP-
hardness in the grounded setting.

Theorem 4. The k-length plan existence problem for lifted
classical planning is NP-complete if k is encoded in unary.

Next we will prove NP-hardness for grounded HTN plan-
ning (and hence NP-completeness). Our proof relies on
the reduction proposed by Erol, Hendler, and Nau (Erol,
Hendler, and Nau 1996) from a grounded classical planning
problem to a regular TOHTN problem1 (which thus shows

1A regular HTN problem is such that a compound task can only
occur at the last place in a method, i.e., all other tasks are ordered
before it.
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Figure 2: Simulating a grounded classical planning problem.

that total order regular HTN problems are PSPACE-hard).

Theorem 5. The k-length plan existence problem for
grounded HTN planning is NP-complete, if k is encoded in
unary.

Proof. Membership for both the grounded and lifted for-
malisms has been obtained. We will first show NP-hardness
for the grounded setting, which thus implies NP-hardness
for the lifted one.

We reduce from the k-length plan existence problem for
grounded classical planning with k given in unary. Given a
grounded classical planning problem Π = (D, sI , g) with
D = (F,A, α) and a k ∈ N in unary, we first simulate the
classical problem by an HTN problem, using the construc-
tion proposed by Erol, Hendler, and Nau (Erol, Hendler, and
Nau 1996). The HTN planning problem has the same ac-
tion set as the classical one and solely one compound task
c (which thus also serves as the initial task network). For
each a ∈ A, we construct two methods m1 and m2 with
m1 = (c, ({t} , ∅, {(t, a)})) and

m2 = (c, ({t1, t2} , {(t1, t2)} , {(t1, a) , (t2, c)}))

An illustration of this construction is shown in Fig. 2. It sim-
ulates selections of actions in finding a solution to the clas-
sical planning problem. The initial state and the goal of the
HTN problem are also identical to the classical one. The re-
duction can then be done by copying k (in unary).

Unfortunately, NP-membership does not hold in lifted
HTN planning because the plan verification problem in
lifted HTN planning is PSPACE-hard.

Theorem 6. The k-length plan existence problem in lifted
HTN planning with k given in unary is PSPACE-hard and is
in NEXPTIME.

Proof. Membership: Membership can be obtained by first
guessing a plan of length up to k in poly-time (because k is
encoded in unary) and then verifying non-deterministically
whether it is a solution to a lifted HTN problem in exponen-
tial time (cf. Thm. 2).

Hardness: We again reduce from the grounded classical
plan existence problem. The construction of the lifted HTN
planning problem is identical to the one presented in the
proof for Thm. 1 except few changes. More specifically,
for each action schema ValuePi(x), we construct a pred-
icate Propi(x) as its positive effect, and the goal of the

lifted HTN problem is
{

Propij (1) | pij ∈ g
}

where g is the
goal description of the grounded classical planning problem.
These modifications thus encode the solution criteria for the

grounded classical planning problem and can replace the
constructed plan that is to be verified in the proof for Thm. 1.
Lastly, notice that any solution plan to the constructed lifted
HTN planning problem is of length at most |F | (where F is
the proposition set of the given grounded classical planning
problem). We can simply let k = |F |, and hence, by con-
struction, the classical planning problem has a solution iff
the constructed lifted HTN planning problem has one which
is of length smaller or equal to k.

Verification of Plan Optimality

Lastly, we discuss the problem of plan optimality verifica-
tion, which is to decide, given a planning problem and a
plan, whether there exist no other solution plans of length
smaller than that of the given one. Many tasks of great im-
portance are centered on plan optimality verification, for in-
stance, the task of model reconciliation and of plan post-
optimization. The former one is to change a planning prob-
lem’s domain with the least number of changes so as to turn
a plan into an optimal solution, and this task is Σp

2-complete
(Sreedharan, Bercher, and Kambhampati 2022). The latter
one is concerned with whether a plan can be further op-
timized by removing some redundant actions in it, and it
is NP-complete in both classical planning (Fink and Yang
1992) and POCL planning (Olz and Bercher 2019).

Despite that the complexity results for those related prob-
lems are well-developed, the problem of plan optimality ver-
ification itself has not yet received particular attention. One
remark of great importance is that the plan optimality ver-
ification problem can be viewed as a complement of the
bounded plan existence problem with the bound given in
unary. The reason is that each action in the plan π provided
in the plan optimality verification problem does not matter.
What we are really concerned with is the length |π| of that
plan. Thus, asking whether the plan π is an optimal one is
identical to asking whether there exist no solution plans of
length smaller or equal to |π| − 1 with |π| − 1 encoded in
unary, which is a complement of the bounded plan existence
problem with the bound given in unary.

As a result, the complexity of the plan optimality verifica-
tion problem for a specific planning formalism is naturally
the complement of that of the bounded plan existence prob-
lem with the bound given in unary for that formalism.

Proposition 3. The plan optimality verification problem for
classical planning, including both the grounded and lifted
representations, and grounded HTN planning is in coNP-
complete, and it is in coNEXPTIME and is PSPACE-hard
for lifted HTN planning.

PSPACE-hardness in lifted HTN planning is due to the
fact that PSPACE = coPSPACE (Arora and Barak 2009).

Since optimality is often diametral to efficiency, and find-
ing a strict optimal solution is time-consuming in practice,
it is quite often the case that a solution whose length lies in
an acceptable range of the length of an optimal solution is
practically more desirable.

Bearing this scenario, we thus formulate the problem of
bounded optimality verification, which is to decide, given a
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planning problem Π, a solution plan π to Π, and a bound
k, whether the length |π∗| of an optimal solution π∗ to Π
satisfies |π| < |π∗| + k. In other words, we want to verify
whether the length of π is not larger than the length of an
optimal solution by the bound k. (Note that both |π∗| and π∗

are not given as input.)
In spite of the fact that the bounded optimality verifica-

tion problem describes a scenario different from the one de-
scribed by the plan optimality verification problem, these
two problems are actually equivalent from the theoretical
point of view. This is because the bounded optimality ver-
ification problem is identical to asking whether there exist
no solution plans π′ to Π such that |π| − k > |π′|. For
if such a π′ exists, we have |π∗| ≤ |π′| because π∗ is an
optimal solution, and hence, |π| > |π′| + k ≥ |π∗| + k,
which is a contradiction. Consequently, for any planning for-
malism, the bounded optimality verification problem with π
and k being the given plan and bound, respectively, is again
the complement of the bounded plan existence problem in
which the bound is |π| − k and is encoded in unary.

Proposition 4. The bounded plan optimality verification
problem (with the bound given in binary) has the same com-
plexity as the plan optimality verification problem, indepen-
dent of planning formalisms.

We have already mentioned earlier that in the (bounded)
plan optimality verification problem, what really matters is
the length of the given plan. As a consequence, we can fur-
ther generalize those problems by replacing the given plan
with the length of the plan. That is, given a planning problem
Π, and two numbers kπ and k where kπ is the length of some
solution, we want to decide whether there exist no solution
plans π′ to Π of length k′ such that kπ − k′ > k. We argue
that this generalized version is useful in the scenario of mod-
eling assistance where a (planning) domain modeler would
like to know whether a domain is correctly modeled (Mc-
Cluskey, Vaquero, and Vallati 2017; Lin and Bercher 2021,
2023; Lin, Grastien, and Bercher 2023). One way to do so is
by validating whether certain properties hold in the domain.
In our case, one could ask whether there exists an optimal
solution within a range of k, provided a claim that there is
a solution π with |π| steps (in some domains, the modeler
might be aware that the solution π exists, but doesn’t want
to write it down for the purpose of asking this question).

For this generalized version of the bounded plan optimal-
ity verification problem, since we replace the given plan with
a number, one could recognize that its complexity is the
complement of the bounded plan existence problem with-
out encoding the bound in unary, independent of planning
formalisms.

Proposition 5. The complexity of the bounded plan opti-
mality verification problem (with the bound given in binary)
where the plan is not explicitly given is the complement of
the bounded plan existence problem, independent of plan-
ning formalisms.

As a special case, when the bound is zero, the bounded
plan optimality verification problem boils down to the plan
optimality verification problem where a plan is replaced by
its length.

Proposition 6. The complexity of plan optimality verifica-
tion where only the length of a plan is given is the comple-
ment of the bounded plan existence problem (with the bound
given in binary).

Conclusion and Extension

We studied the computational complexity of several ques-
tions centered at the bounded plan existence problem. Our
results show that in classical planning and grounded HTN
planning, the computational complexity of plan verification
lies in the range of P to NP-complete, whereas it increases
dramatically in lifted HTN planning. For the bounded plan
existence problem, its complexity ranges from PSPACE-
complete to NEXPTIME-complete depending on planning
formalisms, and the complexity decreases when the bound is
encoded in unary. The problem of (bounded) plan optimal-
ity verification is the complement of bounded plan existence
with the bound given in unary if the plan to be verified is ex-
plicitly given, and it is the complement of the bounded plan
existence problem with the bound given in binary if only the
length of the plan is given.

Extension In practice, an optimal solution usually refers
to a plan of a minimal cost. That is, each action (in a plan-
ning problem) has a certain cost, and we want to find a solu-
tion plan which has an optimal cost (the cost of a plan is the
sum of the cost of each action in it). The bounded plan exis-
tence problem studied in the paper can be viewed as a special
case of this task where each action has cost one. Thus, the
complexity results presented here naturally serve as a lower
bound. In fact, the same upper bound also holds because for
finding a cost optimal plan, we can again guess a plan up to
a certain cost and then verify whether the guessed plan is a
solution.
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Bercher, P.; Behnke, G.; Höller, D.; and Biundo, S. 2017.
An Admissible HTN Planning Heuristic. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence, IJCAI 2017, 480–488. IJCAI.

Bercher, P.; Lin, S.; and Alford, R. 2022. Tight Bounds
for Hybrid Planning. In Proceedings of the 31st Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2022, 4597–4605. IJCAI.

Bylander, T. 1994. The Computational Complexity of
Propositional STRIPS Planning. Artificial Intelligence,
94(1-2): 165–204.

Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity Results for HTN Planning. Annals of Mathematics and
Artificial Intelligence, 18(1): 69–93.

Erol, K.; Nau, D. S.; and Subrahmanian, V. S. 1991.
Complexity, Decidability and Undecidability Results for
Domain-Independent Planning: A Detailed Analysis. Tech-
nical Report CS-TR-2797, UMIACS-TR-91-154, SRC-TR-
91-96, University of Maryland, College Park, Maryland,
USA.

Fink, E.; and Yang, Q. 1992. Formalizing Plan Justifications.
In Proceedings of the 9th Conference of the Canadian Soci-
ety for Computational Studies of Intelligence, CSCSI 1992,
9–14. ACM.

Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In Proceedings of the 22nd
International Joint Conference on Artificial Intelligence, IJ-
CAI 2011, 1955–1961. IJCAI.

Ghallab, M.; Nau, D. S.; and Traverso, P. 2004. Automated
Planning – Theory and Practice. Elsevier.

Helmert, M. 2006. New Complexity Results for Classical
Planning Benchmarks. In Proceedings of the 16th Interna-
tional Conference on Automated Planning and Scheduling,
ICAPS 2006, 52–62. AAAI.
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