Towards Automated Modeling Assistance:

An Efficient Approach for Repairing Flawed Planning Domains

Songtuan Lin Alban Grastien Pascal Bercher School of Computing, The Australian National University {songtuan.lin, alban.grastien, pascal.bercher}@anu.edu.au

Introduction

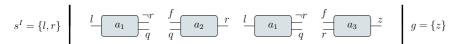
Motivation: The task of modeling planning domains is a major obstacle for deploying AI planning techniques more broadly.

- Tools for modeling assistance are important!
 - E.g., Planning. Domains, itSIMPLE, etc.

Objective: We want to repair a flawed planning domain.

- ▶ Inputs: A flawed planning domain and a (set of) plan(s) contradicting the flawed domain but demanded to be valid.
- Output: A minimal cardinality repair set that turns each plan into a solution.

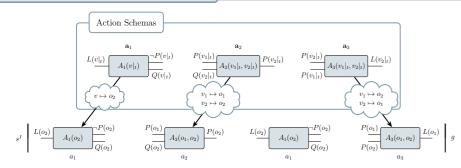
Repairs for Grounded Domains



For each action a, an atomic repair is one of the following:

- $\langle F_a|_f^p \rangle$ with $f \in \operatorname{prec}(a)$ Removing the proposition f from the precondition of a, e.g., $\langle F_{a_3}|_r^p \rangle$ removes r from $\operatorname{prec}(a_3)$.
- $\langle F_a|_f^- \rangle$ with $f \in \mathsf{eff}^-(a)$ Removing the proposition f from the negative effects of a, e.g., $\langle F_{a_1}|_r^- \rangle$ removes r from $\mathsf{eff}^-(a_1)$.
- $\langle F_a|_f^+ \rangle$ Adding the proposition f to the positive effects of a, e.g., $\langle F_{a_1}|_f^+ \rangle$ adds f to $eff^+(a_1)$.

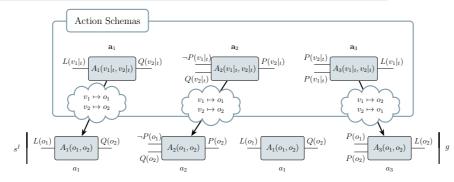
Repairs for Lifted Domains



For each action schema a, an atomic repair is one of the following:

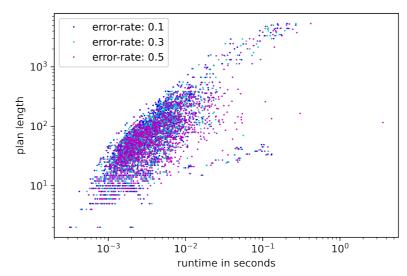
- $\langle \mathbf{F_a} |_{\mathbf{f}}^p \rangle$ with $\mathbf{f} \in \mathtt{prec}(\mathbf{a})$ Removing the *predicate* \mathbf{f} from the precondition of \mathbf{a} .
- $\langle \mathbf{F_a}|_{\mathbf{f}}^- \rangle$ with $\mathbf{f} \in \mathsf{eff}^-(\mathbf{a})$ Removing the *predicate* \mathbf{f} from the negative effects of \mathbf{a} .
- $\langle \mathbf{F_a} |_{\mathbf{f}}^+ \rangle$ Adding the *predicate* \mathbf{f} to the positive effects of \mathbf{a} .
 - Every parameter of **f** must also be a parameter of **a**, e.g., $\langle \mathbf{F}_{\mathbf{a}_2}|_{\mathbf{f}}^+ \rangle$ with $\mathbf{f} = Q(v_1|_t)$ or $\mathbf{f} = Q(v_2|_t)$.

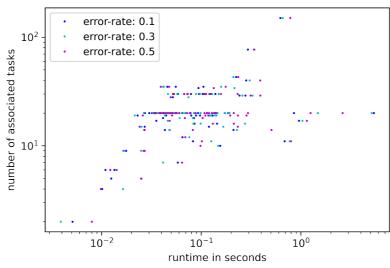
Repairs for Domains with Negative Preconditions



For each action schema **a**, we define the following *extra* atomic repairs:

- $\langle \mathbf{N_a}|_{\mathbf{f}}^p \rangle$ with $\mathbf{f} \in \mathtt{prec}^-(\mathbf{a})$ Removing the predicate \mathbf{f} from the *negative* precondition of \mathbf{a} .
- $\mathbb{Q} \langle \mathbf{N_a}|_{\mathbf{f}}^+ \rangle$ with $\mathbf{f} \in \mathsf{eff}^+(\mathbf{a})$ Removing the predicate \mathbf{f} from the positive effects of \mathbf{a} .
- $\langle \mathbf{N_a}|_{\mathbf{f}}^{-} \rangle$ Adding the predicate **f** to the negative effects of **a**.





Algorithm

Input: A planning problem Π

A plan
$$\pi = \langle a_1 \cdots a_n \rangle$$

Output: A minimal cardinality repair set δ^* turning π into a solution

$$\Theta^* \leftarrow$$

loop

 $\delta \leftarrow$ a minimal hitting set of Θ^*

 $\Pi^* \leftarrow$ the planning problem obtained by applying δ^* to Π

if π is a solution to Π^* then

return δ^*

 $\theta \leftarrow \text{a conflict with } \theta \cap \delta^* = \emptyset$

$$\Theta^* \leftarrow \Theta^* \cup \{\theta\}$$

A conflict is a set of repairs in which at least one *must* be applied in order to turn π into a solution.

Running Example

$$\Theta^* = \emptyset$$

$$\delta^* = \emptyset$$

$$\theta_1 = \begin{cases} \langle F_{a_2}|_f^p \rangle \\ \langle F_{a_1}|_f^+ \rangle \end{cases}$$

$$\Theta^* = \{\theta^1\}$$

$$\delta^* = \langle F_{a_1}|_f^+ \rangle$$

$$\theta_2 = \left\{ \langle F_{a_3}|_r^p \rangle \right\}$$

$$\Theta^* = \{\theta^1, \theta_2\}$$

$$\delta_3 = \left\{ \langle F_{a_1}|_r^+ \rangle \right\}$$

$$\langle F_{a_1}|_r^- \rangle$$

$$\text{Done!}$$

$$\Theta^* = \emptyset$$

$$\delta^* = \emptyset$$

$$\theta_1 = \left\{ \langle F_{a_2} |_f^p \rangle \right\}$$

$$\langle F_{a_1} |_f^{+} \rangle$$

$$\Theta^* = \{\theta^1\}$$

$$\delta^* = \langle F_{a_1}|_f^+ \rangle$$

$$\theta_2 = \left\{ \langle F_{a_3}|_r^p \rangle \right\}$$

$$\Theta^* = \{\theta^1, \theta_2\}$$

$$\delta_3 = \left\{ \langle F_{a_1}|_r^+ \rangle \right\}$$

$$\langle F_{a_1}|_r^- \rangle$$

$$\text{Done!}$$

$$s^{I} = \{l, r\} \qquad \qquad l \qquad a_{1} \qquad \stackrel{f}{q} \qquad \stackrel{f}{q} \qquad a_{2} \qquad \stackrel{r}{r} \qquad l \qquad a_{1} \qquad \stackrel{f}{q} \qquad \stackrel{f}{r} \qquad a_{3} \qquad \qquad g = \{z\}$$