Towards Automated Modeling Assistance: An Efficient

Approach for Repairing Flawed Planning Domains

Songtuan Lin Alban Grastien Pascal Bercher

School of Computing
College of Engineering, Computing and Cybernetics
The Australian National University

February 2023

*

-+ Australian
National
> University

).

l
)
\

(
X

Introduction srounded Problem Evaluation Conclusion

[1o}

Motivation and Objective

The task of modeling a planning domain is a major obstacle for
deploying AT planning techniques more broadly.
o We need tools for modeling assistance!
¢ E.g., Planning.Domains, itSIMPLE, plugin(s) for Visual
Studio Code, etc.

o We want to repair a flawed planning domain.

| Objective |

o Inputs: A flawed planning domain.
A (set of) plan(s) contradicting the flawed

domain but demanded to be valid.
o Output: A cardinality-minimal repair set to the

domain that turns each plan into a solution.

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

(o] }

Background

A planning problem is IT = (D, s!, g) where D = (F, A,) is the
domain of II.

o F: A finite set of propositions.

o A: A finite set of action names.

o a: A— 27 x 27 x 27 mapping each action name to its

precondition and effects.
positive effect

.
; .
: n -
-r
RS
N

~
N

precondition negative effect

NG

o s € 27 The initial state.
o g C F: The goal description.

Grounded Problem ifted Problem

0000

Atomic Repairs

Rl I 0 == N L W S I S PR

For each action a € A, we define the atomic repairs:

° <Fa|7}>: Removing the proposition f from a’s precondition.
* E.g., (Fu,|P) removes r from az’s precondition.

° (Fa|;) Removing the proposition f from a’s negative

effects.

® E.g., (Fu, |,) removes r from aq’s negative effects.

° (Fa|;{) Adding the proposition f to a’s positive effects.
°* Eg., <Fa2|}"> adds f to ag’s positive effects.

3.13

Introduction Grounded Problem Lifted Problem Evaluation

0e00

Approach

Solution

A cardinality-minimal set §* C Fpp with Fpp being the set
of all atomic repairs that turns the plan into a solution.

We maintain a set of sets (of repairs) ©* which is initially empty.

@ On each iteration, we find a set 6 of repairs in which at least one must
be applied for making the plan valid. Then, we add 6 into ©*.
® Such a 0 is called a conflict.

@ A hitting set § of ©* is a set such that 6N # () holds for every § € ©*.
0" denotes a minimal hitting set of ©* (minimal number of repairs).

Introduction Grounded Problem >roble aluation

[e]e] Ie]

Computing a Conflict

Given a plan (a; - - - ap), let a; be the first action in the plan
having a precondition f that is unsatisfied.

o (Fy, \?> is in the conflict.

o For each ¢ < j in descending order:

e If a; deletes f, (Fy,
the computation.
® Otherwise, (F,, ;{) is in the conflict.

o E.g., {(Fa2\§’c>, <Fa1|}L>} is a conflict.

JT) is in the conflict, and we can stop

5.13

Grounded Problem

oooe

Example

-r -
st ={l,r} l% ay az '—r l—‘ ai
q q q

Iteration #2

0 OF = {91}
0 5= <Fa1|}r>

_ [(Fas?)
o o= {{)}
o O = {01,92}

o Each ¢; is a minimal hitting set of ©*.
® §3 = 0* is a solution.

o Each 6; is a conflict.

Grounded Problem

oooe

Example

Iteration #2
Iteration #3

0 O = {61,602}

o= {m D}

© b= (Fu,|f)

o 0= {gﬁlg}

0 OF :{91,62} 0 :{01702}

@ Done!

o Each ¢; is a minimal hitting set of ©*.
® §3 = 0* is a solution.

o Each 6; is a conflict.

Grounded Problem

oooe

Example

Iteration #3
Iteration #1 Iteration #2

00 =0 0 0" = {0}
0 5=0 ° 62:<Fa1|}r>

U o I I RS
0 0" = {0} 0 0% ={6,0}

o Each ¢; is a minimal hitting set of ©*.
® §3 = 0* is a solution.

o Each 6; is a conflict.

Introduction led Problem Lifted Problem Evaluation

@00

Lifted Planning Formalism

A lifted problem is TT = (D, O, s', g) with D = (P, A, a):
o O: A set of objects.
¢ Each object has a type.
o P: A set of predicates.
* Eg., f=P(viliy, - ,vnlt,) where P is the predicate’s
name, v; € V is a variable, and ¢; is the respective type.
o A: A set of action schemas.

°* E.g.,a=A(vil|t;, - ,Unlt,) where A is the action’s name.
® « maps each action schema to its precondition and effects,
each of which is a set of predicates f.

> BEg, f=Pile,, 7vij|tij) with i, € {1,--- ,n} for
each k € {1,---,j}.
o Substituting each variable with an object of the same type
is called grounding.

unded Problem Lifted Problem

oeo

Lifted Domain Repair Problem

Action Schemas

P(vas)

As(vilt, vale)
P(v1]s)

o " P (02) P(oy) °
Q(02) P(03)
ay as
For an action schema a, an atomic repair is one of the following:
o (Falf): Removing the predicate f from a’s precondition.

o (Fal;): Removing f from a’s negative effects.

o (Fa|f): Adding f to a’s positive effects.
¢ The parameters of f must align with those of a.
* Eg., (Falf) with f = Q(u1e) or f = Q(v2])

unded Problem Lifted Problem

ooe

Solving the Lifted Domain Repair Problem

Action Schemas

P(vas)
As(vilt, vale)
P(v1]s)

o Lo P Plor) .
Q(o2) P(o)
ay as
Let a; be the first action in the plan having a proposition f in its
precondition that is unsatisfied, e.g., f = P(01) in as.
0 (Fa|f) is in the conflict if a and f are grounded to a; and f,
respectively. E.g., (Fa,[F) with f = P(v1]s).
o (F.|f) is in the conflict if a and f are grounded to an a; (i < j) and f,
respectively. (Such a and f does not exist for a;.)

@ Stop at ai, i < j, if there exists (Fa|]7) with a and f being grounded
to a; and f.

9.13

Evaluation Jonclusion
[o)

error-rate: 0.1
error-rate: 0.3
error-rate

103

102 4

plan length

10! 4

1073 1072 107t 10°
runtime in seconds

The plot depicts the runtime for repairing domains where one
plan is given. (Up to > 1000 plan length.)

10.13

Introduction srounded Problem ifted Problem Evaluation

oe

Empirical Evaluation (with Multiple Plans)

error-rate: 0.1
1024 - errorrate: 0.3
9 error-rate: 0.5 .
0
L] -
°
it T e
©
O
8 - "
0
0 -
© ° e
5 10! 4 el -
c “
[
fe)
€ . .
3
c -
1072 1071 10°

runtime in seconds

This plot depicts the runtime for repairing domain where
multiple plans are given. (Up to > 100 plans.)

11.13

Introduction srounded Problem Evaluation Conclusion

Conclusion

We developed an approach for repairing planning domains:

o The approach works for both grounded and lifted planning
domains (both shown),

e both with and without negative preconditions (the latter
wasn’t shown).

o We support repairing a single plan and sets of plans.

o Approach can be used to repair unsolvable
problems!

@ Most domains in our benchmark set can be repaired within
one second.

12.13

Introduction 1ded Problem d Problem Evaluation Conclusion

Future Work

Possible and planned directions of future work are:

o Building an interactive tool for repairing domains.
(Plugin for Planning.Domains)

o Extending the approach to support more advanced
features, e.g.,

® negative plans (which plans should be rejected?)

¢ change parameters (see first action in lifted example: should
we allow to add the effect?)

® block certain repairs (should we allow adding an effect if it
already gets deleted?)

¢ and possibly many more!

13.13

Appendix
@00

Lifted Domain Repair Problems with Negative Preconditions

Action Schemas

For each a, we define the following additional atomic repairs:
o (Nal[f): Removing f from a’s negative precondition.

o (Nalg): Adding f to a’s negative effects.
¢ The parameters of f must align with those of a.

o (Na|{): Removing f from a’s positive effects.

Appendix
oeo

Conditional Conflicts

Action Schemas

A repair set is now not a hitting set of a conflict set.
o A repair may result in violating some action’s precondition.
° E.g., (Fa,|{) with f = P(v1];) will make a3 applicable and
make ag inapplicable.
o We need to compute conditional conflicts (¢, 0).

e If all repairs in ¢ are applied to the domain, then at least
one repair in # must be applied.

Appendix
ooe

Computing Conditional Conflicts

Action Schemas

P(03)

as

We first compute a conflict 6 using the same way as before.

o If # has some repair that undoes a previous applied repair,
then we remove it from 6 and add it to the condition .
o E.g., assuming that P(vy|;) is added to a;’s positive effect.
° 0= {<N82|?>7 <N81|;>} with £ = P(U1|t)'
* Removing (N, |) from 6 and adding (Fa, |{) to .
> (Na,|¢) undoes (Fa, [{).

	Introduction
	Domain Repair Problem – Grounded
	Domain Repair Problem – Lifted
	Empirical Evaluation
	Conclusion
	Appendix
	Appendix

