
Towards Automated Modeling Assistance: An Efficient
Approach for Repairing Flawed Planning Domains

Songtuan Lin Alban Grastien Pascal Bercher

School of Computing
College of Engineering, Computing and Cybernetics

The Australian National University

February 2023

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Motivation and Objective

The task of modeling a planning domain is a major obstacle for
deploying AI planning techniques more broadly.

We need tools for modeling assistance!
• E.g., Planning.Domains, itSIMPLE, plugin(s) for Visual

Studio Code, etc.

We want to repair a flawed planning domain.

Objective

Inputs: A flawed planning domain.
A (set of) plan(s) contradicting the flawed
domain but demanded to be valid.

Output: A cardinality-minimal repair set to the
domain that turns each plan into a solution.

1.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Background

A planning problem is Π = (D, sI , g) where D = (F ,A, α) is the
domain of Π.

F : A finite set of propositions.

A: A finite set of action names.

α : A → 2F × 2F × 2F mapping each action name to its
precondition and effects.

a
q

¬rp

precondition

positive effect

negative effect

sI ∈ 2F : The initial state.

g ⊆ F : The goal description.

2.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Atomic Repairs

a1
l ¬r

q
a2

f

q

r

a2
f

q

r

a1
l ¬r

q
a3

f

r

z

a3
f

r

za1
l

¬r
f

q
a1

l
¬r

f
q

a1
l

f

q
a1

l
f

q

sI = {l, r} g = {z}

For each action a ∈ A, we define the atomic repairs:

⟨Fa|pf ⟩: Removing the proposition f from a’s precondition.

• E.g., ⟨Fa3
|pr⟩ removes r from a3’s precondition.

⟨Fa|−f ⟩: Removing the proposition f from a’s negative

effects.
• E.g., ⟨Fa1

|−r ⟩ removes r from a1’s negative effects.

⟨Fa|+f ⟩: Adding the proposition f to a’s positive effects.

• E.g., ⟨Fa2
|+f ⟩ adds f to a2’s positive effects.

3.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Approach

a1
l ¬r

q
a2

f

q

r

a2
f

q

r

a1
l ¬r

q
a3

f

r

z

a3
f

r

za1
l

¬r
f

q
a1

l
¬r

f
q

a1
l

f

q
a1

l
f

q

sI = {l, r} g = {z}

Solution

A cardinality-minimal set δ∗ ⊆ FΠ with FΠ being the set
of all atomic repairs that turns the plan into a solution.

We maintain a set of sets (of repairs) Θ∗ which is initially empty.

On each iteration, we find a set θ of repairs in which at least one must

be applied for making the plan valid. Then, we add θ into Θ∗.

• Such a θ is called a conflict.

A hitting set δ of Θ∗ is a set such that δ∩ θ ̸= ∅ holds for every θ ∈ Θ∗.
δ∗ denotes a minimal hitting set of Θ∗ (minimal number of repairs).

4.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Computing a Conflict

a1
l ¬r

q
a2

f

q

r

a2
f

q

r

a1
l ¬r

q
a3

f

r

z

a3
f

r

za1
l

¬r
f

q
a1

l
¬r

f
q

a1
l

f

q
a1

l
f

q

sI = {l, r} g = {z}

Given a plan ⟨a1 · · · an⟩, let aj be the first action in the plan
having a precondition f that is unsatisfied.

⟨Faj |
p
f ⟩ is in the conflict.

For each i < j in descending order:
• If ai deletes f , ⟨Fai

|−f ⟩ is in the conflict, and we can stop
the computation.

• Otherwise, ⟨Fai
|+f ⟩ is in the conflict.

E.g.,
{
⟨Fa2 |

p
f ⟩, ⟨Fa1 |+f ⟩

}
is a conflict.

5.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Example

a1
l ¬r

q

a2
f

q

r

a2
f

q

r a1
l ¬r

q
a3

f

r

z

a3
f

r

za1
l

¬r
f

q
a1

l
¬r

f
q

a1
l

f

q
a1

l
f

q

sI = {l, r} g = {z}

Iteration #1

Θ∗ = ∅
δ1 = ∅

θ1 =

{⟨Fa2 |
p
f ⟩

⟨Fa1 |+f ⟩

}
Θ∗ = {θ1}

Iteration #2

Θ∗ = {θ1}
δ2 = ⟨Fa1 |+f ⟩

θ2 =

{
⟨Fa3 |pr⟩
⟨Fa1 |−r ⟩

}
Θ∗ = {θ1, θ2}

Iteration #3

Θ∗ = {θ1, θ2}

δ3 =

{
⟨Fa1 |+f ⟩
⟨Fa1 |−r ⟩

}
Θ∗ = {θ1, θ2}
Done!

Each δi is a minimal hitting set of Θ∗.
• δ3 = δ∗ is a solution.

Each θi is a conflict.

6.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Example

a1
l ¬r

q

a2
f

q

r

a2
f

q

r a1
l ¬r

q
a3

f

r

z

a3
f

r

za1
l

¬r
f

q
a1

l
¬r

f
q

a1
l

f

q
a1

l
f

q

sI = {l, r} g = {z}

Iteration #1

Θ∗ = ∅
δ1 = ∅

θ1 =

{⟨Fa2 |
p
f ⟩

⟨Fa1 |+f ⟩

}
Θ∗ = {θ1}

Iteration #2

Θ∗ = {θ1}
δ2 = ⟨Fa1 |+f ⟩

θ2 =

{
⟨Fa3 |pr⟩
⟨Fa1 |−r ⟩

}
Θ∗ = {θ1, θ2}

Iteration #3

Θ∗ = {θ1, θ2}

δ3 =

{
⟨Fa1 |+f ⟩
⟨Fa1 |−r ⟩

}
Θ∗ = {θ1, θ2}
Done!

Each δi is a minimal hitting set of Θ∗.
• δ3 = δ∗ is a solution.

Each θi is a conflict.

6.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Example

a1
l ¬r

q

a2
f

q

r

a2
f

q

r a1
l ¬r

q

a3
f

r

z

a3
f

r

za1
l

¬r
f

q
a1

l
¬r

f
q

a1
l

f

q
a1

l
f

q
sI = {l, r} g = {z}

Iteration #1

Θ∗ = ∅
δ1 = ∅

θ1 =

{⟨Fa2 |
p
f ⟩

⟨Fa1 |+f ⟩

}
Θ∗ = {θ1}

Iteration #2

Θ∗ = {θ1}
δ2 = ⟨Fa1 |+f ⟩

θ2 =

{
⟨Fa3 |pr⟩
⟨Fa1 |−r ⟩

}
Θ∗ = {θ1, θ2}

Iteration #3

Θ∗ = {θ1, θ2}

δ3 =

{
⟨Fa1 |+f ⟩
⟨Fa1 |−r ⟩

}
Θ∗ = {θ1, θ2}
Done!

Each δi is a minimal hitting set of Θ∗.
• δ3 = δ∗ is a solution.

Each θi is a conflict.

6.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Lifted Planning Formalism

A lifted problem is Π = (D,O, sI , g) with D = (P,A, α):

O: A set of objects.
• Each object has a type.

P: A set of predicates.
• E.g., f = P (v1|t1 , · · · , vn|tn) where P is the predicate’s

name, vi ∈ V is a variable, and ti is the respective type.

A: A set of action schemas.
• E.g., a = A(v1|t1 , · · · , vn|tn) where A is the action’s name.
• α maps each action schema to its precondition and effects,

each of which is a set of predicates f .
▶ E.g., f = P (vi1 |ti1 , · · · , vij |tij) with ik ∈ {1, · · · , n} for

each k ∈ {1, · · · , j}.

Substituting each variable with an object of the same type
is called grounding.

7.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Lifted Domain Repair Problem

A1(o2)

a1

L(o2)
¬P (o2)

Q(o2)

A2(o1, o2)

a2

P (o1)

Q(o2)

P (o2)
A1(o2)

a1

L(o2)
¬P (o2)

Q(o2)

A3(o1, o2)

a3

P (o1)

P (o2)

L(o1)
sI g

A1(v|t)

a1

L(v|t) ¬P (v|t)

Q(v|t)
A2(v1|t, v2|t)

a2

P (v1|t)

Q(v2|t)

P (v2|t)
A3(v1|t, v2|t)

a3

P (v2|t)

P (v1|t)

L(v2|t)

Action Schemas

v 7→ o2 v1 7→ o1
v2 7→ o2

v1 7→ o2
v2 7→ o1

For an action schema a, an atomic repair is one of the following:

⟨Fa|pf ⟩: Removing the predicate f from a’s precondition.

⟨Fa|−f ⟩: Removing f from a’s negative effects.

⟨Fa|+f ⟩: Adding f to a’s positive effects.
• The parameters of f must align with those of a.
• E.g., ⟨Fa2

|+f ⟩ with f = Q(v1|t) or f = Q(v2|t)

8.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Solving the Lifted Domain Repair Problem

A1(o2)

a1

L(o2)
¬P (o2)

Q(o2)

A2(o1, o2)

a2

P (o1)

Q(o2)

P (o2)
A1(o2)

a1

L(o2)
¬P (o2)

Q(o2)

A3(o1, o2)

a3

P (o1)

P (o2)

L(o1)
sI g

A1(v|t)

a1

L(v|t) ¬P (v|t)

Q(v|t)
A2(v1|t, v2|t)

a2

P (v1|t)

Q(v2|t)

P (v2|t)
A3(v1|t, v2|t)

a3

P (v2|t)

P (v1|t)

L(v2|t)

Action Schemas

v 7→ o2 v1 7→ o1
v2 7→ o2

v1 7→ o2
v2 7→ o1

Let aj be the first action in the plan having a proposition f in its
precondition that is unsatisfied, e.g., f = P (o1) in a2.

⟨Fa|pf ⟩ is in the conflict if a and f are grounded to aj and f ,
respectively. E.g., ⟨Fa2 |

p
f ⟩ with f = P (v1|t).

⟨Fa|+f ⟩ is in the conflict if a and f are grounded to an ai (i < j) and f ,
respectively. (Such a and f does not exist for a1.)

Stop at ai, i < j, if there exists ⟨Fa|−f ⟩ with a and f being grounded
to ai and f .

9.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Empirical Evaluation (with Single Plan)

The plot depicts the runtime for repairing domains where one
plan is given. (Up to > 1000 plan length.)

10.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Empirical Evaluation (with Multiple Plans)

This plot depicts the runtime for repairing domain where
multiple plans are given. (Up to > 100 plans.)

11.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Conclusion

We developed an approach for repairing planning domains:

The approach works for both grounded and lifted planning
domains (both shown),

both with and without negative preconditions (the latter
wasn’t shown).

We support repairing a single plan and sets of plans.

Approach can be used to repair unsolvable
problems!

Most domains in our benchmark set can be repaired within
one second.

12.13

Introduction Grounded Problem Lifted Problem Evaluation Conclusion

Future Work

Possible and planned directions of future work are:

Building an interactive tool for repairing domains.
(Plugin for Planning.Domains)

Extending the approach to support more advanced
features, e.g.,

• negative plans (which plans should be rejected?)
• change parameters (see first action in lifted example: should

we allow to add the effect?)
• block certain repairs (should we allow adding an effect if it

already gets deleted?)
• and possibly many more!

13.13

Appendix

Lifted Domain Repair Problems with Negative Preconditions

A1(o1, o2)

a1

L(o1) Q(o2)
A2(o1, o2)

a2

¬P (o1)

Q(o2)

P (o2)
A1(o1, o2)

a1

L(o1) Q(o2)
A3(o1, o2)

a3

P (o1)

P (o2)

L(o2)
sI g

A1(v1|t, v2|t)

a1

L(v1|t) Q(v2|t)
A2(v1|t, v2|t)

a2

¬P (v1|t)

Q(v2|t)

P (v2|t)
A3(v1|t, v2|t)

a3

P (v2|t)

P (v1|t)

L(v1|t)

Action Schemas

v1 7→ o1
v2 7→ o2

v1 7→ o1
v2 7→ o2

v1 7→ o2
v2 7→ o1

For each a, we define the following additional atomic repairs:

⟨Na|pf ⟩: Removing f from a’s negative precondition.

⟨Na|−f ⟩: Adding f to a’s negative effects.
• The parameters of f must align with those of a.

⟨Na|+f ⟩: Removing f from a’s positive effects.

1.3

Appendix

Conditional Conflicts

A1(o1, o2)

a1

L(o1) Q(o2)
A2(o1, o2)

a2

¬P (o1)

Q(o2)

P (o2)
A1(o1, o2)

a1

L(o1) Q(o2)
A3(o1, o2)

a3

P (o1)

P (o2)

L(o2)
sI g

A1(v1|t, v2|t)

a1

L(v1|t) Q(v2|t)
A2(v1|t, v2|t)

a2

¬P (v1|t)

Q(v2|t)

P (v2|t)
A3(v1|t, v2|t)

a3

P (v2|t)

P (v1|t)

L(v1|t)

Action Schemas

v1 7→ o1
v2 7→ o2

v1 7→ o1
v2 7→ o2

v1 7→ o2
v2 7→ o1

A repair set is now not a hitting set of a conflict set.

A repair may result in violating some action’s precondition.
• E.g., ⟨Fa1 |+f ⟩ with f = P (v1|t) will make a3 applicable and

make a2 inapplicable.

We need to compute conditional conflicts (φ, θ).
• If all repairs in φ are applied to the domain, then at least

one repair in θ must be applied.

2.3

Appendix

Computing Conditional Conflicts

A1(o1, o2)

a1

L(o1) Q(o2)
A2(o1, o2)

a2

¬P (o1)

Q(o2)

P (o2)
A1(o1, o2)

a1

L(o1) Q(o2)
A3(o1, o2)

a3

P (o1)

P (o2)

L(o2)
sI g

A1(v1|t, v2|t)

a1

L(v1|t) Q(v2|t)
A2(v1|t, v2|t)

a2

¬P (v1|t)

Q(v2|t)

P (v2|t)
A3(v1|t, v2|t)

a3

P (v2|t)

P (v1|t)

L(v1|t)

Action Schemas

v1 7→ o1
v2 7→ o2

v1 7→ o1
v2 7→ o2

v1 7→ o2
v2 7→ o1

We first compute a conflict θ using the same way as before.

If θ has some repair that undoes a previous applied repair,
then we remove it from θ and add it to the condition φ.
E.g., assuming that P (v1|t) is added to a1’s positive effect.

• θ =
{
⟨Na2

|pf ⟩, ⟨Na1
|−f ⟩

}
with f = P (v1|t).

• Removing ⟨Na1
|−f ⟩ from θ and adding ⟨Fa1

|+f ⟩ to φ.
▶ ⟨Na1 |−f ⟩ undoes ⟨Fa1 |+f ⟩.

3.3

	Introduction
	Domain Repair Problem – Grounded
	Domain Repair Problem – Lifted
	Empirical Evaluation
	Conclusion
	Appendix
	Appendix

