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Abstract
Automated modeling assistance is indispensable to the AI
planning being deployed in practice, notably in industry and
other non-academic contexts. Yet, little progress has been
made that goes beyond smart interfaces like programming
environments. They focus on autocompletion, but lack in-
telligent support for guiding the modeler. As a theoretical
foundation of a first step towards this direction, we study the
computational complexity of correcting a flawed Hierarchical
Task Network (HTN) planning domain. Specifically, a mod-
eler provides a (white) list of plans that are supposed to be
solutions, and likewise a (black) list of plans that shall not
be solutions. We investigate the complexity of finding a set
of (optimal or suboptimal) model corrections so that those
plans are (respective not) solutions to the corrected model.
More specifically, we factor out each hardness source that
contributes towards NP-hardness, including one that we deem
important for many other complexity investigations that go
beyond our specific context of application. All complexities
range between NP and Σp

2 , raising the hope for efficient prac-
tical tools in the future.

1 Introduction
AI planning shows great potential for many application ar-
eas outside of academia like automated factories (Helmert
and Lasinger 2010), robotics (Karpas and Magazzeni 2020),
or assistance systems (Bercher et al. 2021; Grover et al.
2020). Despite the many advantages automated planning
brings with it, we still don’t see a large-scale application in
industry. We believe that one of the biggest obstacles in AI
planning becoming applied more broadly in practice is to
model the respective application domain in the first place. In
order to make planning more accessible, tools have been de-
veloped for modeling assistance, e.g., the successful online
PDDL editor Planning.Domains. However, most of the tools
like this only aim at providing a user-friendly programming
environment, e.g., via syntax checking (Strobel and Kirsch
2020), visualization (Roberts et al. 2021), or interactive user
interfaces (Vaquero et al. 2012; Viola et al. 2019).

To the best of our knowledge only a few approaches exist
that provide further AI-based support. Lindsay et al. (2020),
for example, refined an inaccurate hybrid domain to cap-
ture the environment more accurately, and Sreedharan et al.
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(2020) revised a dialogue domain via model reconciliation
(Sreedharan, Chakraborti, and Kambhampati 2021; Sreed-
haran, Bercher, and Kambhampati 2022). Also in the con-
text of modeling assistance Lin and Bercher (2021) stud-
ied the computational complexity of finding corrections to a
flawed domain model provided a plan that is supposed to be
a solution but currently (in the flawed model) is not. Later,
Lin, Grastien, and Bercher (2023) developed a practical ap-
proach for solving this problem in classical planning. Such
an example-guided methodology has been widely used in
many disciplines, e.g., in theory revision (Greiner 1999), and
in explaining or correcting the unsolvability of a planning
problem (Göbelbecker et al. 2010; Gragera, Garcı́a-Olaya,
and Fernández 2022) – the latter two can be regarded contri-
butions to AI planning modeling assistance if integrated into
such a tool.

As another step towards such advanced modeling support,
we investigate theoretical foundations for correcting flawed
planning models in Hierarchical Task Network (HTN) plan-
ning (Erol, Hendler, and Nau 1996; Bercher, Alford, and
Höller 2019). For this, we follow and extend the approach
by Lin and Bercher (2021) where a plan serves as a test case
to witness the correctness of a planning domain. More pre-
cisely, we follow the methodology of modifying a planning
domain by preserving a set of white list plans while rejecting
a set of black list plans. So, given a potentially flawed plan-
ning domain, a set of white list plans, and a set of black list
plans, we want to output a sequence of change operations to
the domain such that all plans in the white list are solutions
in the modified domain and all plans in the black list are not.

Our contribution is twofold. First, we clarify every hard-
ness source that makes correcting an HTN problem to pre-
serve a set of white list plans NP-hard in partial order HTN
planning. This generalizes the results by Lin and Bercher
(2021) which are restricted to total order (TO) HTN plan-
ning with only one white list plan being given. They also do
not investigate the different causes for hardness, which we
identify. Most importantly, one hardness source we found,
namely that deciding whether a task sequence is a valid
linearisation of a (partially ordered) task network in NP-
complete, is of great relevance to many other disciplines in-
volving partial order, e.g., HTN plan verification or partial
order causal link (POCL) planning, and hence can serve as
a basis for complexity studies in those fields as well. Sec-



ond, we provide lower and upper complexity bounds for the
problem when considering both a white list and a black list.

2 HTN Planning
We first introduce the HTN planning formalism used in the
paper which is based upon a combination of the ones given
by Bercher, Alford, and Höller (2019) and by Geier and
Bercher (2011). We first give the definition of task networks.

A task network tn is a tuple (T,≺, α) where T is a set of
task identifiers, ≺ ⊆ T×T specifies the partial order defined
over T , and α is a function that maps each task identifier to
the respective task name.

A linearisation of a task network tn = (T,≺, α), tn, is a
total order of T which respects ≺. We use the notation α(tn)
to refer to the task sequence represented by the linearisation,
i.e., if tn = ⟨t1 · · · tn⟩, then α(tn) = ⟨α(t1) · · ·α(tn)⟩.

The task names in a task network are further categorized
as being primitive or compound. A primitive task name p,
also called an action, is mapped to its precondition, add, and
delete list, each of which is a set of propositions, by a func-
tion δ written δ(p) = (prec, add, del), where add together
with del is called the effects of p. We also write prec(p),
add(p), and del(p) for short. On the other hand, a compound
task name c can be refined (decomposed) into a task network
tn by some method m = (c, tn).

An action sequence ⟨p1 · · · pn⟩ is executable in a state,
which is also a set of propositions, if there exists a sequence
of states ⟨s0 · · · sn⟩ such that s0 = s, and for each 1 ≤ i ≤
n, si−1 ⊆ prec(pi) and si = (si−1\del(pi)) ∪ add(pi).

Two task networks tn = (T,≺, α) and tn′ = (T ′,≺′, α′)

are said to be isomorphic, written tn
φ∼= tn′, iff there exists

a one-to-one mapping φ : T → T ′ such that for all t ∈ T ,
α(t) = α′(φ(t)), and for all t1, t2 ∈ T , if (t1, t2) ∈ ≺, then
(φ(t1), φ(t2)) ∈ ≺′. We also write tn ∼= tn′ if the mapping
φ is not explicitly required in contexts.

Given a task network tn, the notations T (tn), ≺(tn), and
α(tn) refer to the task identifier set, the partial order, and the
identifier-name mapping function of tn, respectively.

For convenience, we define a restriction operation. Let D
and V be two arbitrary sets, R ⊆ D×D a relation, f : D →
V a function, and tn a task network. The restrictions of R
and f to some set X are defined by
• R|X = R ∩ (X ×X)
• f |X = f ∩ (X × V )
• tn|X = (T (tn) ∩X,≺(tn)|X , α(tn)|X)

An HTN planning problem P is a tuple (D, tnI , sI) where
D is the domain of P . D is a tuple (F,Np, Nc, δ,M) where
F is a finite set of propositions, Np is a finite set of primitive
task names, Nc is a finite set of compound task names with
Nc ∩ Np = ∅, δ : Np → 2F × 2F × 2F maps primitive
task names to their preconditions and effects, and M is a set
of (decomposition) methods. tnI is the initial task network,
and sI ∈ 2F is the initial state.

Let tn = (T,≺, α) be a task network, t ∈ T be a task
identifier, c be a compound task name with (t, c) ∈ α, and
m = (c, tnm) be a method. We say m decomposes tn into
another task network tn′ = (T ′,≺′, α′), written tn →m tn′,

iff there exists a task network tn′
m = (Tm,≺m, αm) with

tn′
m

∼= tnm such that
• T ′ = (T\{t}) ∪ Tm.
• ≺′ = (≺∪≺m ∪≺X)|T ′ with ≺X = {(t1, t2) | (t1, t) ∈
≺, t2 ∈ Tm} ∪ {(t2, t1) | (t, t1) ∈ ≺, t2 ∈ Tm}.

• α′ = (α\{(t, c)}) ∪ αm.
A task network tn is decomposed into another task net-

work tn′ by a sequence of methods m = ⟨m1 · · ·mn⟩ with
n ∈ N0 (N0 = N∪{0}), written tn →∗

m tn′, iff there exists a
sequence of task networks ⟨tn0 · · · tnn⟩ such that tn0 = tn,
tnn = tn′, and for each 1 ≤ i ≤ n, tni−1 →mi tni.

A solution to an HTN planning problem P = (D, tnI , sI)
is a task network tn such that all tasks in it are primitive,
there is a method sequence m with tnI →∗

m tn, and it pos-
sesses a linearisation tn with α(tn) being executable in sI .

Notably, in this paper, we consider correcting HTN do-
main models by providing white list and black list plans. A
plan refers to a sequence of actions which is thus different
from a solution to an HTN planning problem syntactically.
In practice, a human is usually more interested in an exe-
cutable plan rather than a partial order task network which
is the reason why we consider plans instead of solution task
networks (which have a plan as witness).

We thus extend the term ‘solution’ and define the criteria
for a plan being a solution to a planning problem as follows.

Definition 1. Let P be an HTN planning problem. A plan π
is a solution to P (thus overriding our previous definition) iff
π is executable in sI , and there is a task network tn which is
a solution to P and has a linearisation tn with π = α(tn).

3 Model Change Operations
We now define four change operations for changing methods
in an HTN planning domain, i.e., adding/deleting actions
and adding/deleting ordering constraints between actions.
We start with the one which adds an action to a method.

Definition 2. Let m = (c, tn) with tn = (T,≺, α) be a
method, Ta = {t1, · · · , tn} and Tb = {t′1, · · · t′m} with
n,m ∈ N0 and Ta ∩ Tb = ∅ be two subsets of T , and
p ∈ Np be a primitive task name. The operation ACT+ is
a function that takes as inputs m, Ta, Tb, and p and outputs
a new method m′ = (c, tn′) with tn′ = (T ′,≺′, α′) such
that T ′ = T ∪ {t} with t /∈ T being a new task identi-
fier, ≺′ = (≺ ∪ ≺a ∪ ≺b)

+1 with ≺a =
⋃n

i=1{(ti, t)} and
≺b =

⋃m
i=1{(t, t′i)}, and α′ = α ∪ {(t, p)}.

Informally, the operation inserts an action to a position in
tn that is after the tasks listed in Ta and before those in Tb.
For instance, a new action is placed before all tasks in tn if
Ta = ∅ and Tb = T .

When removing an action from some method, all ordering
constraints associated with this action should be removed.

Definition 3. Let m = (c, tn) with tn = (T,≺, α) be a
method, and t ∈ T be a task identifier. The operation ACT-

is a function that takes as inputs m and t and outputs a new
method m′ = (c, tn′) with tn′ = tn|T\{t}.

1The superscript + refers to the transitive closure.



The operations aiming at changing ordering constraints
between actions in a method are defined as follows.
Definition 4. Let m = (c, tn) with tn = (T,≺, α) be a
method and t1, t2 ∈ T two identifiers with α(t1), α(t2) ∈
Np. The operation ORD+ is a function that takes as inputs
m and (t1, t2) and outputs a new method m′ = (c, tn′)
with tn′ = (T ′,≺′, α′) such that T ′ = T , ≺′ = (≺ ∪
{(t1, t2)})+, and α′ = α.
Definition 5. Let m = (c, tn) with tn = (T,≺, α) be a
method and t1, t2 ∈ T two identifiers with α(t1), α(t2) ∈
Np and (t1, t2) ∈ ≺. The operation ORD- is a function that
takes as inputs m and (t1, t2) and outputs a new method
m′ = (c, tn′) with tn′ = (T ′,≺′, α′) such that T ′ = T ,
≺′ = ≺\{(t1, t2)}, and α′ = α.

Given two methods m and m′, we write m →△ m′ where
△ refers to one of the operations defined previously with
certain parameters if m′ can be obtained from m via per-
forming △. We further write P →△ P ′ if P and P ′ are two
HTN planning problems which respectively contain m and
m′, and P and P ′ differ solely in these two methods.

Lastly, we present the definition of model transformations
on an HTN domain, generalizing the one in the TO setting
given by Lin and Bercher (2021) to the PO setting.
Definition 6. Given an HTN planning problem P and a
change sequence ∆ = ⟨△1 · · ·△n⟩ (n ∈ N0), we say P is
transformed into another planning problem P ′ by ∆, written
P →∗

∆ P ′ if there exists a sequence of planning problems
⟨P0 · · ·Pn⟩ such that P0 = P , Pn = P ′, and Pi−1 →△i

Pi

for each 1 ≤ i ≤ n. Particularly, we define P →∗
∆ P if ∆

contains no operations. We will use |∆| to denote the length
of a change sequence ∆ throughout the paper.

For any two methods m and m′, we write m →∗
∆ m′ if

there is a sequence of methods ⟨m0 · · ·mn⟩ such that m =
m0, m′ = mn, and for each 1 ≤ i ≤ n, mi−1 →△i

mi.
One remark is that if P can be transformed into P ′, there

must exist a one-to-one correspondence between the meth-
ods in these two planning problems.
Proposition 1. Given two planning problems P and P ′ with
M and M ′ being their method sets respectively, if P →∗

∆ P ′

for some change sequence ∆ = ⟨△1 · · ·△n⟩ (n ∈ N0),
there must exist a bijective mapping β∆ : M → M ′ such
that for each m ∈ M , m →∗

∆j
β∆(m) for some subse-

quence ∆j = ⟨△i1 · · ·△ij ⟩ with 1 ≤ i1 ≤ · · · ≤ ij ≤ n.
Notably, one might find that we did not define operations

that change actions’ preconditions and effects for dealing
with the case where plans that are supposed to be solutions
are not executable. The reason for leaving out this case is
that the respective problem, i.e., making an unexecutable
plan executable by changing actions, has already been stud-
ied by Lin and Bercher (2021), and changing actions is or-
thogonal to changing methods.

4 Complexity of Changing the Model
– Given Only White List Plans

We now move on to investigate the computational complex-
ity of deciding whether a set of white list plans can be turned

tnI

decomposing
+

correcting

white list

The decomposition
hierarchy (forest)

cf. Thm. 2

The mapping
from the leafs
to the actions

cf. Thm. 3

The method to which
the action is added

cf. Thm. 5

Figure 1: The three hardness sources making the problem
of turning a white list plan into a solution by correcting the
domain NP-hard, namely, missing the decomposition hierar-
chy (forest), missing the mapping from the leafs of the forest
to the actions in the plan, and missing the knowledge of the
method to which the missing actions should be added.

into solutions via changing the domain model. This was first
studied for TOHTN planning by Lin and Bercher (2021)
with only one white list plan being concerned. We extend it
to the partial order setting, and with a set of white list plans.
We will also identify all three nondeterminism sources that
result in NP-hardness, see Fig. 1 for these sources.

Definition 7. Let X ⊆ {ACT+, ACT-, ORD-} and |X| ≥ 1,
P be a planning problem, and Π be a set of plans. We define
the problem CHANGEX as: Is there a sequence of model
change operations ∆ such that P →∗

∆ P ′, π is a solution
to P ′ for each π ∈ Π, and ∆ consists of ACT+,ACT-, and
ORD-, according to X?

We use the subscript X to restrict change operations that
are allowed in order to study whether performing some oper-
ations is computationally harder than others. Further, we do
not consider ORD+ in the problem because introducing more
ordering constraints to a domain only increases the chance
of a plan not being a solution. However, this operation will
be required when accounting for black list plans.

We first show that the problem is in NP regardless what
change operations are allowed. The basis for membership is
the fact that if there exists a sequence of change operations
that turns a set of plans into solutions, then there must exist
one of length smaller than a polynomial. This fact is first
proved by Lin and Bercher (2021) in TOHTN planning with
only one white list plan being given. We now extend it to a
set of white list plans with the partial order setting.

Lemma 1. Let P and Π be the planning problem and the
set of white list plans given by an instance of the CHANGEX

problem with X ⊆ {ACT+, ACT-, ORD-} and |X| ≥ 1.
There must exist a change sequence ∆ consisting of oper-
ations restricted by X such that P →∗

∆ P ′, π is a solution
to P ′ for all π ∈ Π, and |∆| is bounded by a polynomial,
provided that any change sequence exists that meets the re-
striction of X and turns the plans in Π into solutions.



Proof. We start by considering the case where all operations
are allowed. The key observation here is that, for the shortest
change sequence that turns all white list plans into solutions,
the maximal number of action insertions is bounded by the
maximal length of plans in the white list, otherwise, by the
piegeonhole theorem, there must be an action that is added
first and deleted afterwards, which contradicts the sequence
being the shortest one. Similarly, the number of action dele-
tions and of ordering constraint and deletions is respectively
bounded by the total number of actions and of ordering con-
straints from all methods. Thus, the length of the sequence
is bounded by the sum of those three numbers.

For other cases where not all change operations are al-
lowed, the length of the shortest change sequence is strictly
smaller. Thus, the lemma holds in general.

We can then exploit this result to prove NP membership.

Theorem 1. Let X ⊆ {ACT+, ACT-, ORD-} and |X| ≥ 1.
CHANGEX is in NP.

Proof. For every X ⊆ {ACT+, ACT-, ORD-} and |X| ≥ 1,
we nondeterministically guess a change sequence of length
smaller than or equal to the polynomial upper bound given
by Lem. 1 which turns P into P ′. We then employ the
nondeterministic polynomial time algorithm VERIFYTN by
Behnke, Höller, and Biundo (2015) to check whether for
each π ∈ Π, π is a solution to P ′. The entire procedure
has polynomial complexity, CHANGEX is thus in NP.

The first source of nondeterminism We now show that
the problem is also NP-hard disregarding what change op-
erations are allowed. Notably, hardness of the variants with
ACT+ ∈ X or ACT- ∈ X can be inferred directly from the
proof given by Lin and Bercher (2021). However, their proof
did not work for the case where only ORD- is allowed. Thus,
we first prove that the variant where only deleting ordering
constraints is allowed is still NP-hard. We believe that this is
strongly counterintuitive because, at first glance, one might
think that it can be easily decided by deleting all ordering
constraints in all methods. Our proof shows that this is not
the case because we face the hardness source of finding de-
composition hierarchies that can lead to the white list plans.

Our proof relies on the reduction from the VERIFYSEQ
problem (Behnke, Höller, and Biundo 2015). We reproduce
its definition as follows.

Definition 8 (Behnke, Höller, and Biundo (2015, Def. 12)).
Let P be an HTN planning problem and π an action se-
quence, the problem VERIFYSEQ is to decide whether π is
a solution to P .

Theorem 2. CHANGEX with X = {ORD-} is NP-hard.

Proof. In particular, Behnke, Höller, and Biundo (2015, Cor.
5) shown that the VERIFYSEQ problem is NP-hard even for
totally unordered HTN planning problems where the initial
task network together with every method has no ordering
constraints. We can thus reduce a VERIFYSEQ instance with
an unordered HTN planning problem P and a plan π as in-
puts to a CHANGEX instance with X = {ORD-} by keep-
ing P unchanged and letting the white list plan set contains

solely the plan π. Since P is already unordered, the opera-
tion ORD- is redundant. Hardness follows immediately.

We then have the following corollary by consulting previ-
ous results by Lin and Bercher (2021).

Corollary 1. Let X ⊆ {ACT+, ACT-, ORD-} and |X| ≥ 1.
CHANGEX is NP-hard.

Further, if we take a closer look at the proof by Behnke,
Höller, and Biundo (2015) for hardness of the VERIFYSEQ
problem, we could observe that the authors constructed a re-
duction from the vertex cover problem where a vertex cover
problem instance has a cover of size smaller than or equal
to some integer k iff the constructed HTN planning problem
has a decomposition hierarchy that leads to the constructed
plan. This implies that finding decomposition hierarchies is
thus a hardness source for CHANGEX .

The second source of nondeterminism Next we investi-
gate whether the problem becomes easy if decomposition hi-
erarchies are given which are supposed to result in the plans
in the white list. This is unfortunately not the case because of
the second hardness source – finding the mapping between
a plan and the result of a decomposition hierarchy.

Concretely, we consider the scenario here in which a do-
main modeler provides not only white list plans but decom-
position hierarchies for each plan in the white list which is
supposed to lead to it (the plan). Note that, in order to make
this scenario practical, we assume that these decomposition
hierarchies are constructed in the potentially flawed domain.
Lin and Bercher (2021) formulated a special case of this sce-
nario in TOHTN planning as a decision problem where only
one white list plan is given by using a method sequence to
capture a decomposition hierarchy, and the authors proved
that the decision problem is NP-hard.

However, using a method sequence to represent a decom-
position hierarchy introduces an unexpected nondetermin-
ism source if some compound task occurs more than once in
the decomposition process for the reason that such a com-
pound task could be refined by any method in the sequence
which can decompose it. For instance, consider a task net-
work ({t1, t2}, {(t1, t2)}, α) such that α(t1) = α(t2) = c
with c being some compound task and a method sequence
(c, tn1) (c, tn2) in which tn1 ≇ tn2 are two task networks.
Clearly, this method sequence can decompose the task net-
work into two different ones depending on how each method
is matched to a compound task.

This additional nondeterminism also makes the problem
studied by Lin and Bercher (2021) a little unrealistic because
when a domain modeler specifies a decomposition hierar-
chy, the matching between each method and each compound
task is likely known in advance.

We thus adapt a rigorous representation of decomposition
hierarchies, called decomposition trees, initially developed
by Geier and Bercher (2011), which specify the matching
between a compound task and a method which decomposes
it. Here, we employ the formalism by Alford et al. (2014)
and by Höller et al. (2020) and extend it by letting a decom-
position process start with an initial task network instead of
an initial task, and it is thus called a decomposition forest.



Given a planning problem P , a decomposition forest g =
(V,E,≺g, αg, βg) with respect to P is a set of labeled di-
rected trees where V and E are the sets of vertices and
edges respectively, ≺g is a partial order defined over V ,
αg : V → Np ∪Nc labels a vertex with a task name, and βg

maps a vertex v ∈ V to a method (c, tn) ∈ M and an iso-
morphism relation φ from T (tn) to the children of v written
ch(v), i.e., φ : T (tn) → ch(v).

A decomposition forest is valid iff for each t ∈ T (tnI),
there exists a root vertex r ∈ V labeled with α(tnI)(t), and
for each v ∈ V with βg(v) = (m,φ), m = (c, tn), and
c ∈ Nc, the following holds.
1) αg(v) = c.
2) tn is isomorphic to the task network induced by ch(v)

under the isomorphism relation φ, i.e.,

tn
φ∼= (ch(v),≺g|ch(v), αg|ch(v))

3) For any child vc of v and any v′ ∈ V , if (v′, v) ∈ ≺g ,
(v′, vc) ∈ ≺g , and if (v, v′) ∈ ≺g , (vc, v′) ∈ ≺g .

4) No other ordering constraints exist in ≺g except those
demanded by 2) and 3).

The yield of a decomposition forest g, yield(g), is the task
network consisting of the leafs of g together with the asso-
ciated ordering constraints and the labels, i.e., yield(g) =
(L(g),≺g|L(g), αg|L(g)) where L(g) refers to the set of all
leafs of g. One can easily observe that a plan is a solution
to an HTN planning problem iff it can be viewed as a valid
linearisation of the yield of a valid decomposition forest.

We now show that correcting an HTN domain is NP-hard
even if a set of decomposition forests are given which are
supposed to lead to the white list plans. This result is a
stronger version of the one by Lin and Bercher (2021) be-
cause 1) we take as an input a decomposition forest instead
of a method sequence, and 2) it holds even if only one de-
composition forest and one plan are given. We also explore
the hardness source causing this along the way which could
serve as a foundation for complexity investigations in many
disciplines beyond HTN planning. We first formulate the re-
spective decision problem in terms of decomposition forests.

Definition 9. Given an HTN planning problem P , a set
of plans Π = {π1, · · · , πn}, and a set of decomposition
forests G = {g1, · · · , gn} with respect to P where gi =
(Vi, Ei,≺gi , αgi , βgi) for each 1 ≤ i ≤ n, we define the
problem CHANGEDFX with X ⊆ {ACT+, ACT-, ORD-}
and |X| ≥ 1 as: Is there a change sequence ∆ consisting
of operations restricted by X such that P →∗

∆ P ′, and for
each 1 ≤ i ≤ n, there exists a valid decomposition forest
g′i = (V ′

i , E
′
i,≺g′

i
, αg′

i
, βg′

i
) with respect to P ′ such that the

following holds:
1) yield(g′i) has a linearisation tn with πi = α(tn),
2) |βg′

i
| = |βgi |, and

3) for all v ∈ Vi, if αgi(v) ∈ Nc and βgi(v) = (m,φ) for
some m ∈ M and isomorphic relation φ, then v ∈ V ′

i
and βg′

i
(v) = (β∆(m), φ′) such that for all v∗ ∈ ch(v)∩

ch(v′), φ−1(v∗) = φ′−1
(v∗)2.

2φ−1 and φ′−1 represent the inverse mapping of φ and φ′.
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Figure 2: The constructions of tn and π in the proof of
Thm. 3. The solid arrows represent ordering constraints. The
dashed arrows illustrate the mapping.

Notably, each decomposition forest given in the set G is
constructed with respect to the potentially flawed model P .
The restriction on g′i for each 1 ≤ i ≤ n basically demands
that each compound task in g′i being decomposed as well as
the method that decomposes it are identical to those in gi,
which thus encodes the criterion that πi should be a solution
under the respective decomposition hierarchy.

Hardness of this problem adheres to the fact that deciding
whether an action sequence is a valid linearisation of a task
network is NP-complete (the second hardness source). This
problem, called VALIDSEQ, is formulated as follows.

Definition 10. Let tn be a primitive task network and π be
an action sequence. The problem VALIDSEQ is to decide
whether there exists a linearisation tn of tn with π = α(tn).

Theorem 3. VALIDSEQ is NP-complete.

Proof. Membership: Given a (partial order) task network tn
and an action sequence π, membership can be easily proved
by first guessing a linearisation tn of tn and then verifying
whether α(tn) = π.

Hardness: We reduce from the NP-complete 3SAT prob-
lem (Cook 1971). Let C1, · · · , Cm be the clauses of a SAT
formula given by an 3SAT instance which consists of vari-
ables x1, · · ·xn. We construct one action axi for each vari-
able xi (1 ≤ i ≤ n) and one action aCj for each clause Cj

(1 ≤ j ≤ m). The key idea of the reduction is construct-
ing a task network tn = (T,≺, α) encoding the constraints
imposed by the SAT formula.

To this end, we construct txi
, txi

∈ T with α(txi
) =

α(txi
) = axi

for each 1 ≤ i ≤ n and t1Cj
, t2Cj

, t3Cj
∈ T with

α(t1Cj
) = α(t2Cj

) = α(t3Cj
) = aCj for each 1 ≤ j ≤ m. An

ordering constraint (txi
, tkCj

) or (txi
, tkCj

) exists for some
1 ≤ k ≤ 3 if the literal xi or xi is in the clause Cj . Fig. 2
depicts an example of such construction in which C1 con-
sists of the literals x1, x2, and x3. Lastly, we construct the
action sequence π as shown by the Fig. 2.

A literal xi or xi, 1 ≤ i ≤ n, is set to true if the respective
task identifier txi

or txi
is mapped to the action axi

placed
in the subsequence labeled with true (and thus it is false if
the task identifier is mapped to axi

in the subsequence la-
beled with false). The presence of the subsequence labeled
by landmark enforces that an action aCj

(1 ≤ j ≤ m) in
it must map to a task identifier tkCj

for some 1 ≤ k ≤ 3.
For such a mapping to be valid, tkCj

’s preceding task must



be mapped to an action in true , which thus encodes the cri-
terion that for each clause, at least one literal in it should be
true. For instance, in Fig. 2, t1C1

can be mapped to aC1
in

landmark if tx1
is mapped to ax1

in true . The remaining
tasks can then be mapped to the actions in the subsequence
labeled by garbage collector without violating any ordering
constraint. Lastly, we prove that the given 3SAT instance
has a yes answer if and only if the VALIDSEQ instance con-
structed has one.

( =⇒ ): Suppose there exists a truth assignment over the
variables x1, · · · , xn which satisfies the given SAT formula.
The constructed action sequence can form a valid linearisa-
tion of the task network in the sense that every pair of the
task identifiers, txi and txi , are mapped to the respective ac-
tions in true and false according to the truth assignment, and
each action aCi (1 ≤ i ≤ m) in landmark is mapped to
a task identifier tjCi

(1 ≤ j ≤ 3) whose preceding task is
mapped to an action in true. For instance, in Fig. 2, the ac-
tion aC1 in landmark is mapped to the task t1C1

because tx1

is mapped to ax1 in true. The remaining tasks in the task net-
work are then accordingly mapped to the actions in garbage
collector, and no ordering constraints are violated.

( ⇐= ): Suppose there exist no truth assignments satisfy-
ing the SAT formula. For any truth assignment, there must
be some clause Cj (1 ≤ j ≤ m) where all three literals are
set to false, which means that the tasks representing these
three literals will be mapped to the respective actions in
false. Thus, at least one ordering constraint is violated.

Clearly, for any X ⊆ {ACT+, ACT-, ORD-} with |X| ≥
1, we can easily reduce the VALIDSEQ problem to the re-
spective CHANGEDFX problem by letting the primitive task
network given by the VALIDSEQ problem be the initial task
network, and the action sequence be the only white list plan.

Corollary 2. Let X ⊆ {ACT+, ACT-, ORD-} and |X| ≥ 1,
CHANGEDFX is NP-hard.

One could observe that the VALIDSEQ problem is equiv-
alent to asking whether there is a bijective mapping between
the actions in the task network and in the plan. It follows that
the second hardness source of correcting an HTN domain is
finding the mapping between the yield of a decomposition
forest and a plan.

We now discuss why we believe that the NP-completeness
result for deciding VALIDSEQ (Thm. 3) is important for fu-
ture complexity investigations as well, i.e., in a general con-
text of HTN planning and where reasoning about partially
ordered plans is of importance, such as in partial order causal
link (POCL) planning.

For the latter, note that it was shown that deciding whether
an executable linearization of a partially ordered plan exists
is NP-complete (Nebel and Bäckström 1994; Erol, Hendler,
and Nau 1996). Now we also know that even providing such
a (non-labeled) sequence does not make that task easier.

The VALIDSEQ problem can be observed as a fundamen-
tal source of hardness of many (related) problems in HTN
planning (and specifically those of verification). E.g., NP-
hardness of the VERIFYSEQ problem (cf. Def. 8) (Behnke,
Höller, and Biundo 2015) follows directly from our result.

This is also the case for NP-hardness of the PLANCOMPAT-
IBILITY problem (Behnke, Höller, and Biundo 2015), which
asks whether a (partially ordered) task network is an order-
ing refinement of another given task network. Both proofs
required one page each, but easily follow from ours.

We can also conclude from this result that HTN plan ver-
ification remains NP-hard even if in addition to the task net-
work to verify we have an executable action sequence pro-
vided. This thus generalizes the respective result (Cor. 1) by
Behnke, Höller, and Biundo (2015). So we expect that our
result will be convenient in many complexity investigations
where the verification of task networks plays some role.

The third source of nondeterminism Lastly, we study
the problem of correcting HTN domains under the strongest
assumption where the correspondence between the tasks in
the yield of a decomposition forest and the actions in a plan
is also provided.

More concretely, this refers to the scenario where after a
domain modeler provides a white list plan set and the respec-
tive decomposition forest set, the correspondence between
the tasks in a decomposition forest and the actions in a plan
is observed by the modeler as well. The modeler could thus
identify which action in the plan is missing from the decom-
position forest and which is not occurred in the plan but is
appeared in the hierarchy. Our goal is again to turn the white
list plans into solutions by considering all the information.

To formulate this scenario, we capture the correspondence
between a decomposition forest g and a plan by a function
ϱ : T (yield(g)) → N which maps a task in the yield of g to
an index of the plan. We call such a ϱ a modification function
of which the syntax and semantics are defined as follows:

Definition 11. Let π = ⟨a1 · · · an⟩ a plan and g a decompo-
sition forest. ϱ : T (yield(g)) → N is a modification function
if ϱ is one-to-one (i.e., for any t1, t2 ∈ T (yield(g)), ϱ(t1) =
ϱ(t2) iff t1 = t2), and for each t ∈ T (yield(g)), one of the
following holds: either ϱ(t) = i for some 1 ≤ i ≤ n with
α(yield(g))(t) = ai, or ϱ(t) is undefined.

For any t ∈ T (yield(g)), the semantics of ϱ is defined as:
• If ϱ(t) = i for some 1 ≤ i ≤ n, t is supposed to be the

action ai in π, i.e., t is inherited to ai.
• If ϱ(t) is undefined, t is supposed to be deleted from g.
• For some 1 ≤ i ≤ n, if there is not a t ∈ T (yield(g))

with ϱ(t) = i, ai in π is supposed to be added to g.

Let P be a planning problem, g = (V,E,≺g, αg, βg) a
decomposition forest, π = ⟨a1 · · · an⟩ a plan, and ϱ a mod-
ification function with respect to g and π. Suppose ∆ is a
change sequence such that P →∗

∆ P ′, and there is a valid
decomposition forest g′ = (V ′, E′,≺g′ , αg′ , βg′) satisfying
all three criteria given in Def. 9. Let tn = ⟨t1 · · · tn⟩ be the
linearisation of yield(g′) with α(tn) = π. We say ∆ pre-
serves the function ϱ if the following holds: For every leaf
l ∈ V and its parent v ∈ V with βg(v) = (m,φ), if ϱ(l) = i
for some ai in π, and there exists a leaf l′ ∈ V ′ such that
v ∈ V ′ is also the parent of l′, βg′(l′) = (β∆(m), φ′), and
φ−1(l) = φ′−1

(l′), then ti = l′.
We now formulate the decision problem we will study:

Definition 12. Given an HTN planning problem P , a set



of plans Π = {π1, · · · , πn}, a set of decomposition forests
G = {g1, · · · , gn} with respect to P , and a set of modifica-
tion functions Φ = {ϱ1, · · · , ϱn} with respect to πi and gi
for each 1 ≤ i ≤ n, we define the problem CHANGEDFMX

in the same way as CHANGEDFX except that we demand
that the change sequence ∆ should preserve ϱi for each i.

Clearly, CHANGEDFMX with ACT+ /∈ X can be solved
in polynomial time due to the presence of modification func-
tions. More concretely, for each gi and ϱi, we could find
all t ∈ yield(gi) with ϱi(t) being undefined and deciding
whether t could be removed from the respective method by
tracing backward through gi. In particular, the task t can be
deleted from a method m if for all other occurrence of m in
all gj with 1 ≤ j ≤ n, deleting t will not violate the function
ϱj . The similar approach can then be used to decide whether
a plan πi can be turned into a valid linearisation by deleting
ordering constraints from methods.
Theorem 4. CHANGEDFMX is in P if ACT+ /∈ X .

Unfortunately, the problem is still NP-hard if ACT+ is al-
lowed. This stems from the third hardness source which is
to find which method should a missing action being added
to. This hardness source follows from the proof by Lin and
Bercher (2021) for showing CHANGEX with X = {ACT+}
is NP-hard in TOHTN in which the authors constructed a
reduction from the independent set problem such that an in-
dependent set of size k (k ∈ N) can be found in a graph iff a
plan can be turned into a solution by finding some methods
to which missing actions are added. Further, in their con-
struction, all other operations including ORD- are redundant.
Theorem 5. CHANGEDFMX is NP-hard if ACT+ ∈ X .

Taking into account Thm. 1, we have the following.
Corollary 3. Let X ⊆ {ACT+, ACT-, ORD-} and |X| ≥ 1,
CHANGEX and CHANGEDFX are NP-complete. For any
X with ACT+ ∈ X , CHANGEDFMX is NP-complete, oth-
erwise, it is in P.

In conclusion, we have now identified all three hardness
sources result in NP-hardness of correcting an HTN domain,
namely, finding decomposition forests, finding mappings be-
tween yields of decomposition forests and plans, and finding
methods to which missing actions should be added.

Optimal Change Sequences It is quite often the case in
practice that a domain modeler might be interested in finding
a minimal length change sequence instead of an arbitrary
one which turns a set of plans into solutions. We formulate
such a scenario by introducing an additional integer k.
Definition 13. Let k ∈ N and X ⊆ {ACT+, ACT-, ORD-}
and |X| ≥ 1. We define CHANGEk

X , CHANGEDFk
X , and

CHANGEDFMk
X as the problems in which the demanded

change sequence is of length smaller or equal to k.
It follows from Lem. 1 that the shortest change sequence

is bounded by a polynomial in length. Thus, the presented
k-bounded problems are in NP because no matter how large
the given k is, we can always guess and verify a change se-
quence of polynomial length. Further, we can easily reduce
an unbounded problem into the respective k-bounded one by
letting k be the polynomial upper bound.

Corollary 4. Given k ∈ N, CHANGEk
X and CHANGEDFk

X
are NP-complete for any X ⊆ {ACT+, ACT-, ORD-} and
|X| ≥ 1. CHANGEDFMk

X is NP-complete if ACT+ ∈ X ,
otherwise, it is in P.

Exploiting the hardness sources We now want to discuss
how practical realizations of solving the CHANGEX problem
can be developed in light of our results.

Firstly, since the problem CHANGEX is NP-complete, it is
thus natural to think of encoding it as a SAT formula and em-
ploying a SAT solver to solve the problem. For this, we have
to encode all nondeterminism sources. Having each source
identified in advance could thus help us understand what we
are facing and adapt some existing SAT encoding for some
problem that is related or similar to a hardness source. More
concretely, Behnke, Höller, and Biundo (2017; 2018; 2019)
proposed several approaches for encoding a decomposition
forest as a SAT formula, which could thus be adapted here
for coping with the first hardness source.

Those SAT encoding of decomposition forests can be eas-
ily extended to incorporate action deletions and insertions,
i.e., the third hardness source. More concretely, for an action
a and a method m, we can define a variable Iam to indicate
whether a is inserted to m. Similarly, for an action a in a
method m, we could define another variable Ra

m indicating
whether a is removed from m. The consequence of adding
or deleting an action can then be incorporated into the SAT
formula for the decomposition forest by constructing further
implications defined over those variables.

Lastly, having encoding both the decomposition forest g
and the deletions and insertions of actions as a SAT formula,
we still have to deal with the second hardness source, which
is to find a mapping between yield(g) and the given plan π.
One could recognize that this bears a lot of similarities to
the subgraph isomorphism problem where we can view the
plan as one graph and the yield of the decomposition forest
as the other, and hence the plan π is a valid linearisation of
yield(g) iff yield(g) is a subgraph of π. Consequently, we
could also employ some SAT encoding of the subgraph iso-
morphism problem, e.g., the one by Torán (2013), to encode
this second hardness source.

More importantly, knowing that ACT+ is the most expen-
sive operation might be a key insight into developing a more
sophisticated algorithm. This is because, instead of encoding
both action insertions and deletions, we might only need to
deal with the insertions, and whether deletions are feasible
can then be checked in polynomial time due to Thm. 4.

5 Having White and Black List Plans
We now move on to study the scenario where a domain en-
gineer provides both white list plans and black list plans.
Definition 14. Let X ⊆ {ACT+, ACT-, ORD+, ORD-} and
|X| ≥ 1, P be a planning problem, and Π+ and Π− be
two sets of plans. We define the problem CHANGEWBX as:
Is there a change sequence ∆ consisting of operations re-
stricted by X such that P →∗

∆ P ′, and for any π+ ∈ Π+

and π− ∈ Π−, π+ is a solution to P ′, and π− is not.
One can easily observe that the problem CHANGEX is a

special case of CHANGEWBX . We thus have the following:



Algorithm 1: An algorithm deciding CHANGEWBX nonde-
terministically based on the VERIFYSEQ oracle machine.

1: Non-deterministically choose a change sequence ∆
2: Apply ∆ to P with P →∗

∆ P ′

3: for all π+ ∈ Π+ do
4: if VERIFYSEQ(P ′, π+) = false then
5: return false
6: for all π− ∈ Π− do
7: if VERIFYSEQ(P ′, π−) = true then
8: return false
9: return true

Theorem 6. Given X ⊆ {ACT+, ACT-, ORD+, ORD-} and
|X| ≥ 1, CHANGEWBX is NP-hard.

In fact, we hypothesize that CHANGEWBX could fall in
the complexity class called Σp

2 that is beyond NP under the
assumption P ̸= NP. Here, we will present a proof of mem-
bership. We first give an introduction to the complexity class
Σp

2 based upon the work by Arora and Barak (2009).
The complexity class Σp

2, also denoted as NPNP, is the set
of all decision problems which can be decided in polynomial
time by a nondeterministic Turning Machine M with access
to an NP oracle machine. An NP oracle machine is a hypoth-
esis machine which can decide any decision problem in NP
in polynomial time. In other words, a problem is in Σp

2 if we
can design a nondeterministic procedure which decides the
problem in polynomial time by invoking a hypothesis func-
tion which decides a problem in NP in polynomial time.

Consequently, we will prove Σp
2 membership of the prob-

lem CHANGEWBX by exploiting the NP oracle machine
which decides the VERIFYSEQ (cf. Def. 8) problem that lies
in NP (Behnke, Höller, and Biundo 2015, Cor. 3) in poly-
nomial time. The nondeterministic algorithm for deciding
CHANGEWBX is shown in Alg. 1.

Theorem 7. Given an X ⊆ {ACT+, ACT-, ORD+, ORD-}
with |X| ≥ 1, CHANGEWBX is in Σp

2.

Taken together, we know that the problem CHANGEWBX

is within Σp
2 and at least NP-hard.

6 Discussion
One might observe that we did not consider the operations of
adding and deleting methods. The reason for this is twofold.
First, the complexity of deciding whether a set of plans can
be turned into solutions via adding and deleting methods is
still NP-complete, which follows trivially from the results
by Lin and Bercher (2021) and which is caused by the third
hardness source investigated earlier. Thus, studying these
two operations does not provide any novel insight. Second,
these two operations can be simulated by those we studied
in the paper. Concretely, deleting a method can be simulated
by adding an inapplicable action to the method, and adding a
method is equivalent to defining an empty template (method)
for some tasks and filling them appropriately.

Further, we also did not consider method preconditions.
Note that there are two semantics of method preconditions,

that is, either a method precondition holds immediately be-
fore the first subtask of the method, or it holds sometimes
before the first subtask. For the latter one, we can simply
compile a method precondition away by introducing a new
action at the beginning of this method with the method’s pre-
condition as its precondition. For the former, the formalism
incorporating such method preconditions does not yet exist.

7 Conclusion
In this paper, we first investigated the computational com-
plexity of deciding whether a set of white list plans can be
turned into solutions by modifying an HTN planning domain
and clarified every hardness source that makes it NP-hard.
Afterwards, we take into account both white list and black
list plans and shown that the problem involving both these
two sets of plans is at least NP-hard but lies in the class Σp

2.
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Gragera, A.; Garcı́a-Olaya, Á.; and Fernández, F. 2022. Re-
pair Suggestions for Planning Domains with Missing Ac-
tions Effects. In Proceedings of the 5th International Work-
shop of Explainable AI Planning, XAIP 2022.
Greiner, R. 1999. The Complexity of Theory Revision. Ar-
tificial Intelligence, 107(2): 175–217.
Grover, S.; Sengupta, S.; Chakraborti, T.; Mishra, A. P.; and
Kambhampati, S. 2020. RADAR: automated task planning
for proactive decision support. Human-Computer Interac-
tion, 35(5-6): 387–412.
Helmert, M.; and Lasinger, H. 2010. The Scanalyzer Do-
main: Greenhouse Logistics as a Planning Problem. In
Proceedings of the 20th International Conference on Au-
tomated Planning and Scheduling, ICAPS 2010, 234–237.
AAAI Press.
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