
Was Fixing this Really That Hard?

On the Complexity of Correcting HTN Domains
Songtuan Lin & Pascal Bercher

School of Computing, The Australian National University, Canberra, Australia
{songtuan.lin, pascal.bercher}@anu.edu.au

Introduction

Motivation : The task of modeling planning domains is a major
obstacle for deploying planning techniques more broadly.

✎ Tools for modeling assistance are demanded!
✎ Planning. Domains, itSIMPLE, etc.

Objective : We want to study the complexity of deciding whether a
set of white list plans and of black list plans can be respectively
turned into solutions and non-solutions by changing an HTN
planning domain.

✎ We will identify all hardness sources that make this prob-
lem NP-hard.

HTN Planning

HTN Planning is to keep decomposing so-called compound tasks until
a primitive action sequence called a plan is obtained.

tnI

sI

✎ A compound task is decom-
posed (refined) into a task
network by a method.

✎ A task network is a partial
order set of compound and
primitive tasks.

✎ A plan is a solution if it is an
executable linearization of a
primitive task network ob-
tained by decomposing the
initial task network.

Model Change Operations

✎ Act+/Act−: Adding/removing an action to/from a method
together with the respective ordering constraints.

Act+

Act−

✎ Ord+/Ord−: Adding/removing an ordering constraint over
actions to/from a method.

Ord+

Ord−

Preview of the Results

We are concerned with correcting (changing) the domain of an HTN
planning problem:

tnI

failed (white list) plan

sI

✎ Q1: How hard is it to turn the
failed white list plan into a solution?

✏ It is NP-complete, and there
are three sources each of which
results in NP-hardness.

✎ Q2: What if we consider both white
list and black list plans?

✏ It is NP-hard, but it is in Σp
2.

Hardness Source #1

It is NP-complete to find a decomposition hierarchy that results in
a given plan.

tnI

sI

How to decompose?

Inputs: An HTN planning problem P .

A set Π of white list plans.

Output: True if each plan in Π can be
turned into a solution by changing the do-
main of P , otherwise false.

Hardness Source #2

It is NP-complete to decide whether a plan is a valid linearization of
a primitive task network.

tnI

sI

Is a valid linearization?

Inputs: An HTN planning problem P.

A set Π of white list plans.

A set Θ of decomposition hierarchies.

Output: True if we can change the domain of
P to turn each plan in Π into a solution, wit-
nessed by a decomposition hierarchy in Θ, oth-
erwise false.

Why this result is of great importance in practice?

✎ It serves as a fundamental hardness source for many problems
involving reasoning over partial order.

✏ E.g., POCL planning, the PlanVerification problem,
and the PlanCompatibility problem.

Hardness Source #3

It is NP-complete to find the method to which an action should be
added.

tnI

Adding to which method?

sI

Inputs: A set Π of plans.

An HTN planning problem P.

A set Ω of decomposition hierarchies.

A set Φ of mappings ϱ from the re-
sult of a g ∈ Ω to the actions in a
π ∈ Π.

Output:True if we can change the domain of
P to turn each plan π ∈ Π into a solution, wit-
nessed by a decomposition hierarchy g ∈ Ω and
a mapping ϱ ∈ Φ, otherwise false.

Exploiting the Hardness Sources

We can adapt existing approaches for the hardness sources we iden-
tified to develop a method for turning white plans into solutions:

✎ Coping with the hardness source #1:

✏ Adapting the existing SAT encoding for searching for a
decomposition hierarchy.

✎ Coping with the hardness source #3:

✏ Extending the above SAT encoding to incorporate model
changes, e.g., we can use a varible xa

m to indicate whether
an action a is added to the method m.

✎ Coping with the hardness source #2:

✏ Adapting the SAT encoding for the (sub)graph isomor-
phism problem.

Given White and Black List Plans

When given both white list and black list plans, the problem is NP-
hard but in the class Σp

2.

✎ It generalizes the case where only white list plans are given.

✏ NP-hardness follows.

✎ We can assume an oracle machine that verifies whether a plan
is a solution to an HTN planning problem and develop a non-
deterministic poly-time algorithm based on it.

✏ Σp
2-membership follows.


