

School of Computing, The Australian National University, Canberra, Australia {songtuan.lin, pascal.bercher}@anu.edu.au

Introduction

- Motivation : The task of modeling planning domains is a major obstacle for deploying planning techniques more broadly.
 - \mathbb{S} Tools for modeling assistance are demanded!
 - ♥ Planning. Domains, itSIMPLE, etc.
- **Objective** : We want to study the complexity of deciding whether a set of *white* list plans and of *black* list plans can be respectively turned into solutions and non-solutions by changing an HTN planning domain.
 - ∞ We will identify all hardness sources that make this problem \mathbb{NP} -hard.

HTN Planning

HTN Planning is to keep decomposing so-called *compound* tasks until a primitive action sequence called a plan is obtained.

- S A compound task is decomposed (refined) into a tasknetwork by a method.
- order set of compound and primitive tasks.
- A plan is a solution if it is an executable linearization of a primitive task network obtained by decomposing the initial task network.

Preview of the Results

We are concerned with correcting (changing) the domain of an HTN planning problem:

- failed (white list) plan
- [∞] Q1: How hard is it to turn the failed white list plan into a solution?
 - \blacksquare It is **NP**-complete, and there are three sources each of which results in NP-hardness.
- $\mathbf{Q2}$: What if we consider both white list and black list plans?
 - \square It is **NP**-hard, but it is in Σ_2^p .

It is **NP**-complete to find a decomposition hierarchy that results in a given plan.

A set Π of white list plans. main of \mathcal{P} , otherwise false.

Hardness Source #2

It is NP-complete to decide whether a plan is a valid linearization of a primitive task network.

Inputs: An HTN planning problem \mathcal{P} . A set Π of white list plans. A set Θ of decomposition hierarchies.

Output: True if we can change the domain of \mathcal{P} to turn each plan in Π into a solution, witnessed by a decomposition hierarchy in Θ , otherwise false.

- Why this result is of great importance in practice?
 - ∞ It serves as a fundamental hardness source for many problems involving reasoning over partial order.
 - ☞ E.g., POCL planning, the PLANVERIFICATION problem, and the PLANCOMPATIBILITY problem.

Hardness Source #3

It is **NP**-complete to find the method to which an action should be added.

Adding to which method?

Inputs: A set Π of plans.

An HTN planning problem \mathcal{P} . A set Ω of decomposition hierarchies. A set Φ of mappings ϱ from the result of a $g \in \Omega$ to the actions in a $\pi \in \Pi$.

Output: True if we can change the domain of \mathcal{P} to turn each plan $\pi \in \Pi$ into a solution, witnessed by a decomposition hierarchy $q \in \Omega$ and a mapping $\rho \in \Phi$, otherwise false.

- \bigcirc Coping with the hardness source #2:

Given White and Black List Plans

hard but in the class Σ_2^p .

It generalizes the case where only white list plans are given.

Exploiting the Hardness Sources

We can adapt existing approaches for the hardness sources we identified to develop a method for turning white plans into solutions:

- \odot Coping with the hardness source #1:
 - Adapting the existing SAT encoding for searching for a decomposition hierarchy.
- \bigcirc Coping with the hardness source #3:
 - Extending the above SAT encoding to incorporate model changes, e.g., we can use a variable x_m^a to indicate whether an action a is added to the method m.
 - Adapting the SAT encoding for the (sub)graph isomorphism problem.
- When given both white list and black list plans, the problem is NP-
 - \blacksquare NP-hardness follows.
 - \mathbb{S} We can assume an oracle machine that verifies whether a plan is a solution to an HTN planning problem and develop a nondeterministic poly-time algorithm based on it.
 - \square Σ_2^p -membership follows.