
Was Fixing this Really That Hard?
On the Complexity of Correcting HTN Domains

Songtuan Lin & Pascal Bercher

School of Computing
The Australian National University

February 2023



Introduction Background Complexity Conclusion

Motivation and Objective

Motivation

The task of modeling a planning domain is a major obsta-
cle for deploying AI planning techniques more broadly.

Automated assistance for modeling domains is vital!
• E.g., tools for providing a more user-friendly

programming environment.

We will study the problem of repairing a flawed HTN
planning domain modeled by a domain modeler.

Another application of this technology is providing
explanations for why failed plans are no solutions.
(The changes would act as explanation.)

1.13



Introduction Background Complexity Conclusion

Motivation and Objective

Input: A (flawed) HTN domain, a set of white list plans,
and a set of black list plans.

Output: A sequence of changes (repairs) to the domain so
that all white list and black list plans will be solutions and
non-solutions, respectively.

Objective

We investigate the complexity of repairing a flawed HTN
planning domain to turn a set of white list plans into so-
lutions and a set of black list plans into non-solutions.

We will identify all hardness sources of the problem.

We do this by gradually factoring each of them out by adding
them as additional inputs to the problem.

2.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

HTN Planning

tnI

sI

failed (white list) plan

An HTN domain D = (F ,A, C,M, α):

F : A set of propositions.

A: A set of primitive tasks.

C: A set of compound tasks.

M: A set of methods.

α : A → 2F × 2F × 2F .

An HTN planning problem P = (D, tnI , sI):

tnI : An initial task network.

sI : An initial state.

3.13



Introduction Background Complexity Conclusion

Domain Change Operations

Act+/Act−: Adding/removing a primitive task to/from a
method together with the respective ordering constraints.

Act+

Act−

Ord+/Ord−: Adding/removing an ordering constraint
to/from a method.

Ord+

Ord−

4.13



Introduction Background Complexity Conclusion

Given Only White List Plans: Hardness Source #1

Configuration

Inputs: A set Π of plans.
An HTN planning problem P.

Output: True if we can change the domain of P to
turn each π ∈ Π into a solution, otherwise false.

tnI

sI

How to decompose?

Hardness Source #1: Finding a
decomposition hierarchy which leads
to a given plan is NP-hard.

The problem is NP-complete no
matter what changes are allowed.

5.13



Introduction Background Complexity Conclusion

Given Only White List Plans: Hardness Source #2

Configuration

Inputs: A set Π of plans.
An HTN planning problem P.
A set Ω of decomposition hierarchies.

Output: True if we can change the domain of P to
turn each plan π ∈ Π into a solution, witnessed by a
decomposition hierarchy in Ω, otherwise false.

tnI

sI

Is a valid linearization?

Hardness Source #2: Verifying
whether an action sequence is a valid
linearization of a primitive task network
is NP-complete.

NP-completeness holds for this
configuration no matter what
changes are allowed.

6.13



Introduction Background Complexity Conclusion

Given Only White List Plans: Hardness Source #2

Theorem

Given a primitive task network tn and a plan π, deciding
whether π is a valid linearization of tn is NP-complete.

(Note that this is closely related to the NP-complete question of
determining whether there exists an executable linearization.)

It serves as a fundamental hardness source for a wide range
of problems involving reasoning over partial order. E.g.,

• for the PlanCompatibility problem,
• for the PlanVerification problem, and
• in Partial Order Causal Link (POCL) Planning.

7.13



Introduction Background Complexity Conclusion

Given Only White List Plans: Hardness Source #3

Configuration

Inputs: A set Π of plans.
An HTN planning problem P.
A set Ω of decomposition hierarchies.
A set Φ of mappings ϱ from the result of a
g ∈ Ω to the actions in a π ∈ Π.

Output: True if we can change the domain of P to
turn each plan π ∈ Π into a solution, witnessed by a
decomposition hierarchy g ∈ Ω and a mapping
ϱ ∈ Φ, otherwise false.

8.13



Introduction Background Complexity Conclusion

Given Only White List Plans: Hardness Source #3

tnI

Adding to which method?

sI

Hardness Source #3: Deciding to
which method an action should be
added is NP-complete.

NP-completeness holds for this
configuration if Act+ is allowed,
otherwise, it is poly-time solvable.

9.13



Introduction Background Complexity Conclusion

Given White and Black List Plans

Theorem

Given an HTN planning problem P, a set Π+ of white list
plans, and a set Π− of black list plans, deciding whether
each π+ ∈ Π+ can be turned into a solution and each
π− ∈ Π− into a non-solution by changing the domain of P
is NP-hard and is in Σ2

p.

Having both white list and black list plans is a generalization of

having only white list ones.

• NP-hardness holds naturally.
We can assume an oracle machine (a hypothesis machine) deciding

whether a plan is a solution to an HTN problem in O(1) time and

develop a non-deterministic algorithm for the problem.

• This implies Σ2
p membership.

10.13



Introduction Background Complexity Conclusion

Conclusion

tnI

decomposing
+

correcting

white list

Source #1:
The decomposition
hierarchy (forest)

Source #2:
The mapping
from the leafs
to the actions

Source #3:
The method to which
the action is added

Each source results in NP-hardness.
When black list plans are also given, the problem is
NP-hard but in Σ2

p.

11.13



Introduction Background Complexity Conclusion

Future Work – Exploiting the Hardness Sources

Developing practical approaches based on the hardness sources:

Coping with the hardness source #1.
• Adapting the existing SAT encoding for searching for a

decomposition forest.

Coping with the hardness source #2.
• Adapting the SAT encoding for the (sub)graph

isomorphism problem.

Coping with the hardness source #3.
• We can easily extend the above encoding to incorporate

model changes. (E.g., by using a variable xa
m to indicate

whether an action a is added to a method m.)

These ideas base on an exiting HTN plan verifier via SAT.
(Though other ideas are possible as well, e.g., by extending an
approach that verifies HTN problems via (HTN) planning.)

12.13



Introduction Background Complexity Conclusion

Future Work – Extension

So far, we only allowed adding/deleting actions and orderings.
Much more is possible!

Also allow adding/deleting compound tasks.

Extend the formalism to allow method preconditions
(so that we can respect, but also possibly change them)

Add/delete entire methods.

Probably several more...

13.13


	Introduction
	Background
	Complexity
	Given Only White List Plans
	Given White and Black List Plans

	Conclusion

