
On Total-Order HTN Plan Verification with Method Preconditions
– An Extension of the CYK Parsing Algorithm

Songtuan Lin1, Gregor Behnke2, Simona Ondrčková3, Roman Barták3, Pascal Bercher1

1 School of Computing, The Australian National University, Canberra, Australia
2 ILLC, University of Amsterdam, Amsterdam, The Netherlands

3 Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic
{songtuan.lin, pascal.bercher}@anu.edu.au, g.behnke@uva.nl, {ondrckova, bartak}@ktiml.mff.cuni.cz

Abstract

In this paper, we consider the plan verification problem for to-
tally ordered (TO) HTN planning. The problem is proved to
be solvable in polynomial time by recognizing its connection
to the membership decision problem for context-free gram-
mars. Currently, most HTN plan verification approaches do
not have special treatments for the TO configuration, and the
only one features such an optimization still relies on an ex-
haustive search. Hence, we will develop a new TOHTN plan
verification approach in this paper by extending the standard
CYK parsing algorithm which acts as the best decision pro-
cedure in general.

Introduction
The problem of plan verification is to decide, given a plan,
whether it is a solution to a planning problem. The study
of this problem has drawn increasing attentions in the last
decade for its potential usages in benefiting the research on
planning. For instance, an independent plan verifier is vital
in International Planning Competition (IPC) for the purpose
of verifying whether a plan produced by a participated plan-
ner is correct or not. Recently, several works have explored
the possibility of employing plan verification technique in
Human-AI interaction. For example, Behnke, Höller, and
Biundo (2017) pointed out the connection between the plan
verification problem and mixed-initial planning (Myers et al.
2003) where a planner shall iteratively adjust its output plan
according to a user’s change requests, and plan verification
might also be seen as an approach for planning domain vali-
dation, i.e., deciding whether a planning domain is correctly
engineered by a domain engineer, where a plan is given as a
test case that is supposed to be a solution to a planning prob-
lem, and a failed verification indicates that there are some
flaws in the domain.

In this paper, we consider the plan verification problem in
Hierarchical Task Network (HTN) planning (Erol, Hendler,
and Nau 1996; Geier and Bercher 2011; Bercher, Alford,
and Höller 2019). We particularly focus on a special class of
HTN planning problems called totally ordered (TO) HTN
planning problems which plays a prominent role in HTN
planning, as evidenced by the fact that TO planning problem
benchmarks significantly outnumber partially ordered (PO)
ones in the IPC 2020 on HTN Planning. In spite of the sig-
nificance, most existing HTN plan verifiers (Behnke, Höller,

and Biundo 2017; Barták et al. 2020; Höller et al. 2022)
have no special treatments for TO problems, and the only
one having such an optimization is by Barták et al. (2021b).

The core of our TO plan verification approach is the CYK
parsing algorithm (Sakai 1961), which can be employed here
because a TOHTN planning problem is semantically equiva-
lent to a context-free grammar (CFG) (Höller et al. 2014; Lin
and Bercher 2022), and hence, the TOHTN plan verification
problem is essentially the parsing problem for CFG. How-
ever, that result by Höller et al. (2014) does not take into
account so-called method preconditions which occur quite
often in practice in many TOHTN planning benchmarks and
thus also become an obstacle to directly applying the CYK
algorithm to plan verification. Consequently, we will extend
the standard CYK algorithm to adapt method preconditions.

The idea of viewing an HTN plan verification problem
as a parsing problem is widely used. For instance, Barták,
Maillard, and Cardoso (2018) and Barták et al. (2020) ex-
ploited the connection between HTN planning problems
and attributed grammars and proposed a parsing-based plan
verification approach for general HTN planning problems,
which can also be used to correct flawed HTN plans (Barták
et al. 2021a) and is then extended to have the special treat-
ments for the TO setting (Barták et al. 2021b). Notably, their
treatments for TOHTN planning problems still rely on an
exhaustive search and thus have several overheads, which
is mandatory because the approach takes into account some
additional state constraints. However, those state constraints
are rare in many TOHTN planning benchmarks. For this
reason, we are not concerned with such constraints, which
allows us to fully exploit the connection between TOHTN
planning problems and CFGs and thus develop a more effi-
cient TO plan verification approach.

HTN Formalism
In order to explain how our TO plan verification approach
works, we first introduce the HTN formalism employed in
the paper. Since we only consider TOHTN plan verification
in this paper, the formalism presented here is targeted specif-
ically at the TO configuration, and it is an adaption of the one
by Geier and Bercher (2011), by Behnke, Höller, and Biundo
(2018), and by Bercher, Alford, and Höller (2019). We start
by presenting the definition of TOHTN planning problems
and explain in detail each component in the definition later.

Definition 1. A totally ordered HTN planning problem P is
a tuple (D, tnI , sI) where D = (F,Nc, Np,M, δ) is called
the domain of P . F is a finite set of propositions, Nc is
a finite set of compound task names, Np is a finite set of
primitive task names, M is a finite set of methods m with
m ∈ 2F ×Nc × (Nc ∪Np)

∗, and δ : Np → 2F × 2F × 2F

is a function. sI ∈ 2F and tnI ∈ (Nc ∪ Np)
∗ are called

the initial state and the initial task network (or the goal task
network) of P , respectively.

We also define a tn ∈ (Nc ∪ Np)
∗ as a task network,

which is a sequence of task names.
In the definition presented above, task names are catego-

rized as being primitive and compound. A primitive task
name p, also called an action, is mapped to the respec-
tive precondition, add list, and delete list by the function δ,
written δ(p) = (prec(p), add(p), del(p)), where prec(p),
add(p), and del(p) respectively refer to the preconditions,
add list, and delete list of p, each of which is a set of proposi-
tions. A primitive task name p is applicable in a state s ∈ 2F ,
iff prec(p) ⊆ s, and we say that a state s′ is a consequence of
applying a primitive task p in a state s, written s→p s′, iff p
is applicable in s, and s′ = (s\del(p)) ∪ add(p). Similarly,
a state trajectory ⟨s0 · · · sn⟩ is a consequence of applying
a sequence of primitive task names tn = ⟨p1 · · · pn⟩ with
n ∈ N0, i.e., a primitive task network, in a state s iff s0 = s,
and for each 1 ≤ i ≤ n, si−1 →pi

si, and we say that the
state sn is obtained by applying tn in s, written s→∗

tn sn.
On the other hand, a compound task c in a task network

could be rewritten as another task network tn by a method
m = (prec(m), c, tn) where prec(m) refers to the precondi-
tion of m. We call this process the decomposition of c, writ-
ten c→m tn. We will also omit the subscript m in the nota-
tion, i.e., c → tn, to indicate that there exists some method
which decomposes c into tn. m can be applied to decom-
posing c if and only if its precondition is satisfied. We will
elaborate how to determine whether the precondition of a
method is satisfied (i.e., the semantics of method precondi-
tions) later on. The concept of decompositions can also be
extended to task networks:
Definition 2. Let tn and tn′ be two task networks where tn
is of the form tn = ⟨tn1 c tn2⟩ with c being a compound
task and tn1 and tn2 being two sequences of task names,
each of which might be empty, and m = (prec(m), c, t̂n)
be a method. We say that tn is decomposed into tn′ by m,
written tn →m tn′, if tn′ = ⟨tn1 t̂n tn2⟩. Similarly, we
write tn → tn′ to indicate that there exists some method
which decomposes tn into tn′. We also write tn →∗

m tn′ if
tn is decomposed into tn′ by a sequence m of methods and
tn→∗ tn′ if there exists such a method sequence.

For any two task networks tn and tn′ with tn →∗ tn′, a
compound task c in tn is eventually decomposed into a con-
tinuous subsequence t̂n in tn′ (Barták et al. 2021b). Hence,
we abuse the notation to let c →∗ t̂n denote that the com-
pound task c in some task network is decomposed into the
continuous subsequence t̂n of another task network by a se-
quence of methods, and we write c→∗

m t̂n if such a method
sequence m is understood in the context.

Although a method sequence could capture the decom-

position of a task network (or a compound task), it is am-
biguous because it does not specify the correspondence be-
tween the methods and the compound tasks occurring in the
decomposition process. In order to address this, we intro-
duce the notion of decomposition trees based upon the one
by Geier and Bercher (2011) which characterizes a decom-
position process unambiguously.
Definition 3. Given a TOHTN planning problem P , a de-
composition tree g = (V, E ,≺g, αg, βg) with respect to P is
a labeled directed tree where V and E are the sets of vertices
and edges, respectively, ≺g is a total order defined over V ,
αg : V → Np ∪ Nc labels a vertex with a task name, and
βg maps a vertex v ∈ V to a method m ∈ M . Particularly,
g is valid if it is rooted at a vertex r with αg(r) = cI , and
for every inner vertex v whose children in the total order
≺g forms the sequence ⟨v1 · · · vn⟩ (n ∈ N), if α(v) = c
for some c ∈ Nc, then βg(v) = m for some m ∈ M with
m = (prec(m), c, tn) and tn = ⟨αg(v1) · · ·αg(vn)⟩.

Let ⟨l1 · · · ln⟩ (n ∈ N) be the leafs of g ordered in ≺g .
We define the yield of g, written yield(g), as the task net-
work ⟨αg(l1) · · ·αg(ln)⟩. For convenience, we will simply
use L(g) to refer to the leafs of g ordered in ≺g .

Having the definition of decomposition trees in hand, we
can now define the semantics of method preconditions.
Definition 4. Let P be a TOHTN planning problem, g a
valid decomposition tree g with respect to P where L(g) =
⟨l1 · · · ln⟩ and yield(g) = ⟨αg(l1) · · ·αg(ln)⟩ (n ∈ N) con-
sists solely of primitive tasks, and m = (prec(m), c, tn)
a method with βg(v) = m for some inner vertex v ∈ V .
The precondition of m is satisfied if and only if for the
first vertex li (1 ≤ i ≤ n) in L(g) that is a descendant of
v, it holds that prec(m) ⊆ si−1 with sI →∗

tn
′ si−1 and

tn
′
= ⟨αg(l1) · · ·αg(li−1)⟩. For i = 1, we define s0 = sI .

Lastly, we define the solution criteria for TOHTN plan-
ning problems.
Definition 5. Given a TOHTN planning problem P , a solu-
tion to P is a task network tn consisting solely of primitive
tasks such that tn is executable in sI , i.e., sI →∗

tn s for
some s ∈ 2F , and there exists a valid decomposition tree
g with respect to P such that yield(g) = tn and for every
inner vertex v of g with βg(v) = m for some m ∈ M , the
precondition of m is satisfied.

TOHTN Plan Verification
Having presented the TOHTN planning formalism, we now
move on to introduce our CYK-based TOHTN plan verifica-
tion approach. The basis for using the standard CYK pars-
ing algorithm in TOHTN plan verification is that primitive
tasks, compound tasks, and methods in TOHTN planning
problems are respectively analogous to terminal symbols,
non-terminal symbols, and production rules in CFGs. Con-
sequently, the TOHTN plan verification problem is analo-
gous to the membership decision problem for CFGs, which
is what the CYK algorithm targeted at.

The CYK algorithm demands that an input CFG (resp. a
TOHTN planning problem) should be in Chomsky Normal
Form (Chomsky 1959) where every production rule (resp. a

Algorithm 1: The CYK-based plan verification approach.
The lines without being numbered are the standard CYK al-
gorithm, and those being numbered are the modifications for
adapting method preconditions and 2RF.

Input: A plan π = ⟨p1 · · · pn⟩
A planning problem P in 2RF

Output: True or false depending on whether π is a
solution to P

▷ Let ⟨s0 · · · sn⟩ be the state sequence s.t.
s0 = sI , and si−1 →pi

si for each i ∈ {1 · · ·n}
for i← n to 1

A[i, i] = {c | c→ ⟨pi⟩} ∪ {pi}
for j ← i to n

for k ← i to j − 1

for m ∈

m

∣∣∣∣∣∣
m = (prec(m), c, tn),

tn = ⟨c′1 c′2⟩, c′1 ∈ A[i, k],

c′2 ∈ A[k + 1, j]

▷ Checking the method precondition

8: if prec(m) ⊆ si−1

A[i, j]← A[i, j] ∪ {c}
▷ Finding the unit productions

11: for m ∈
{
m

∣∣∣∣ c′ →∗
m ⟨c⟩, c′ ∈ Nc,

c ∈ A[i, j]

}
12: if prec(m) ⊆ si−1 for each m in m
13: A[i, j]← A[i, j] ∪ {c′}

if cI ∈ A[1, n] return true
else return false

method) decomposes a non-terminal symbol (resp. a com-
pound task) into two non-terminal symbols or into a terminal
symbol (resp. a primitive task). It then determines whether
a string is in the language of the CFG (resp. whether a plan
is a solution to the planning problem) by constructing parse
trees (resp. decomposition trees) in a bottom-up manner.

More concretely, given a string (resp. a plan) ⟨p1 · · · pn⟩
(n ∈ N), the ultimate goal of the CYK algorithm is to find,
for each subsequence πi

j = ⟨pi · · · pj⟩ (1 ≤ i ≤ j ≤ n), the
set A[i, j] of all possible non-terminal symbols c such that
c →∗ πi

j , i.e., c can be decomposed into πi
j by a sequence

of production rules (methods). Mathematically, this goal can
be accomplished via the following recursion formula:

A[i, j] =

{
c | c→ ⟨pi⟩

}
if i = j{

c

∣∣∣∣ c→ ⟨c′1 c′2⟩, i ≤ k < j

c′1 ∈ A[i, k], c′2 ∈ A[k + 1, j]

}
if i < j

The interpretation of the formula is that, for each 1 ≤ i ≤
n, a non-terminal symbol c is in the set A[i, i] if it can be
decomposed into the terminal symbol pi by some production
rule, and for each i, j with 1 ≤ i < j ≤ n, A[i, j] has
a non-terminal symbol c if c can be decomposed into two
other non-terminal symbols c′1 and c′2 by some production
rule such that there exists a k with i ≤ k < j, c′1 ∈ A[i, k],
and c′2 ∈ A[k + 1, j], i.e., c′1 →∗ πi

k and c′2 →∗ πk+1
j .

Notably, the recursion holds because we make the restriction

that the input CFG must be in CNF.
In the CYK algorithm, the recursion is implemented via

dynamic programming where a two dimension table is con-
structed to memorise each entry A[i, j] (1 ≤ i ≤ j ≤ n),
and the table is filled in a right-left, bottom-up order. The
implementation is shown by Alg. 1 in which the lines with-
out being numbered are the code for the standard CYK al-
gorithm, and we substitute every component in CFGs (i.e.,
terminal/non-terminal symbols, production rules, etc.) with
its counterpart in TOHTN planning problems.

In order to adapt the CYK algorithm in TOHTN plan ver-
ification, we have to deal with method preconditions whose
counterpart does not exist in CFGs. This is however trivial
because we can simply check whether a method’s precondi-
tion is satisfied when filling the table, see Alg. 1, line 8.

Notably, in our approach (as well as the CYK algorithm),
when computing an entry A[i, j], we have to find all methods
m (resp. production rules) such that c→m ⟨c′1 c′2⟩ for some
c ∈ Nc, k ∈ {i · · · j−1}, c′1 ∈ A[i, k], and c′2 ∈ A[k+1, j].
Most literature about the CYK algorithm in the context of
formal languages accomplish this step via iterating through
all production rules. This is however not efficient in the con-
text of plan verification. The reason for this is that in a CFG,
the number of production rules is considered to be relatively
smaller than the length of a string, whereas this is not the
case in plan verification. For instance, some TOHTN plan-
ning problem could have more than 10 thousands methods
compared with the length of an input plan which is normally
below one thousand.

Thus, in order to eliminate this overhead, we maintain two
mappings φ1 : Np → M and φ2 : N × N → M where
N = Np ∪ Nc. Specifically, given a p ∈ Np, φ1(p) = m
for some m ∈ M iff m decomposes some compound task
into ⟨p⟩, and similarly, given t1, t2 ∈ N , φ2(t1, t2) = m iff
m decomposes a compound task into ⟨t1 t2⟩. Consequently,
given two entries A[i, k] and A[k+1, j] (or one single entry
A[i, i]), we can quickly find all methods which decompose
a compound task into two (or one) subtask(s) that are (is) in
the respective entries (entry) by visiting the mapping(s).

Though the procedure presented above can already serve
as a mature TOHTN plan verification approach, it relies on
the strict constraint that an input planning problem must be
in CNF. Similar to how the transformation from a CFG to
CNF is done (Hopcroft, Motwani, and Ullman 2007; Lange
and Leiß 2009), transforming a TOHTN planning problem
into CNF usually requires four steps ordered as follows:
1) binarization: splitting every method such that it contains

at most two subtasks,
2) deletion: deleting all methods and tasks which will result

in the empty task network,
3) elimination: eliminating all unit productions, and
4) termination: enforcing that for any method, if it contains

only one subtask, then the task is a primitive one.
As pointed out by Lange and Leiß (2009), the four steps (the
third one in particular) for transforming a CFG into CNF
will lead to a quadratic explosion of the size of the grammar,
which is also the case for a TOHTN planning problem. E.g.,,
consider a sequence of unit productions c1 → · · · → cn
where c1, · · · , cn are compound tasks. Further, there exist

k methods m1, · · · ,mk with mi = (cn, ⟨ai a′i⟩) for each
1 ≤ i ≤ k where ai and a′i are two actions. For the purpose
of eliminating this sequence of unit productions, for each cj
(1 ≤ j ≤ n), we have to construct additional k methods
m∗

1, · · · ,m∗
k with m∗

i = (cj , ⟨ai a′i⟩) for each 1 ≤ i ≤ k.
It thus results in a quadratic explosion. Such an explosion is
a significant overhead for TOHTN plan verification because
usually a planning problem already contains an enormous
number of methods.

In ordered to avoid such an explosion, we only apply the
first step binarization to an input TOHTN planning prob-
lem and result in the planning problem being in so-called
2-Normal Form (2NF) (Behnke and Speck 2021; Lange and
Leiß 2009), i.e., in which every method contains at most two
subtasks (could be either primitive or compound). The bina-
rization step works as follows. For a method (c, ⟨t1 · · · tn⟩)
with n > 2 and ti ∈ Np ∪ Nc, we first construct n − 1
compound tasks c1, · · · , cn−1 for each 1 ≤ i ≤ n. After-
wards, we construct the methods (c, ⟨t1 c1⟩), (cn−1, ⟨tn⟩),
and (ci, ⟨ti ci+1⟩) for each 1 ≤ i < n − 1. Clearly, the size
of the input problem only increases linearly after this step.

The price for adapting 2NF instead of CNF is that we have
to merge the remaining three transformation steps into the
plan verification procedure. That is, after computing an entry
A[i, j] in the standard CYK algorithm, we shall also search
for all compound tasks c′ ∈ Nc such that c′ →∗ ⟨c⟩ for some
c ∈ A[i, j], and the precondition of every method occurring
in the decomposition process is satisfied. This is equivalent
to finding all method sequences m such that the precondition
of each method in it is satisfied, and c′ →∗

m ⟨c⟩ for some
c′ ∈ Nc and c ∈ A[i, j], and such compound tasks c′ should
then also be included in A[i, j] (Alg. 1, lines 11 to 13).

For this purpose, we first want to find all compound tasks
c and all method sequences m such that c →∗

m ε where ε
refers to the empty task network. We call such a c a nullable
task which is analogous to a nullable symbol in CFGs. This
can be done by adapting the recursive procedure for find-
ing all nullable symbols in a CFG (Hopcroft, Motwani, and
Ullman 2007), as shown below:

Basis: If c→m ε for some m ∈M , then c is a nullable task,
and we mark ⟨m⟩ as a method sequence that decomposes
c into the empty task network.

Induction: If c →m ⟨t1 t2⟩ (or c →m ⟨t⟩) for some m ∈
M and t1, t2 (or t) are (is) nullable, then c is also nul-
lable, and for any two method sequences m1 and m2 that
respectively decompose t1 and t2 into the empty task net-
work (or any m with t →∗

m ε), ⟨m m1 m2⟩ (or ⟨m m⟩)
together with any permutation of it is marked as a method
sequence that decomposes c into ε.

Having identified all nullable tasks in a planning problem,
we could now find all method sequences m such that c′ →∗

m
⟨c⟩ for some c′, c ∈ Nc. We do so by constructing a graph
G = (V,E) such that V = M , i.e., the vertices are the
methods of the planning problem, and an edge (m′,m) ∈ E
with m′ = (prec(m′), c′, tn′) and m = (prec(m), c, tn) iff
either tn′ = ⟨c⟩ or tn′ = ⟨t0 t1⟩ such that there exists an
i ∈ {0, 1} with ti = c and t1−i being a nullable task. We
name such a graph as a unit production graph. The concrete

procedure for constructing such a graph is as follows: For
each method m ∈M with m = (prec(m), c, tn),
• if tn = ⟨t0 t1⟩ for some t0, t1 ∈ N (N = Nc ∪ Np),

and there exists an i ∈ {0, 1} such that t1−i is nullable,
then for each m′ that can decompose ti, we add the edge
(m,m′) to the graph, or

• if tn = ⟨t⟩ for some t ∈ Nc, then for each method m′

that decomposes t, we add the edge (m,m′) to the graph.
The core of exploiting a unit production graph to find all

method sequences m such that c′ →∗
m ⟨c⟩ for some c′, c ∈

Nc is the fact that for any two compound tasks c′, c ∈ Nc,
c′ →∗ ⟨c⟩ iff there exists a path in G from m′ to m such that
m′ and m respectively decompose c′ and c.

Theorem 1. Let c, c′ ∈ Nc, c→∗ ⟨c′⟩ if and only if there is
a path in the unit production graph G = (V,E) from m to
m′ such that m decomposes c and m′ decomposes c′.

Proof. (=⇒): We prove this by induction on the number of
steps in decomposing c into c′. The base case is c→ ⟨c′⟩. In
this case, a path (m′,m) with c′ being decomposed by m′

exists by the construction of the graph G.
Now suppose that c→∗ ⟨c′⟩ in k steps (k > 1), it follows

that there must exist a method m which decomposes c into
a task network tn such that either tn containing only one
subtask task ĉ that is in Nc or tn consisting two subtasks
where one is nullable, and the other ĉ is decomposed into
c′, because otherwise, c cannot be decomposed into c′. For
both cases, we have that ĉ →∗ ⟨c′⟩ in k − 1 steps. By the
induction hypothesis, there exists a path from m̂ to m′ in
the graph such that m′ decomposes c′ and m̂ decomposes ĉ.
Further, by the construction of the graph, (m, m̂) ∈ E, and
hence, there is a path in G from m to m′.

(⇐=): We prove this by induction on the length of the
path from m to m′. The base case is that (m,m′) ∈ E. By
construction, m decomposes a compound task c into a task
network tn such that either tn = ⟨c′⟩ or tn = ⟨t0 t1⟩ in
which there exists an i ∈ {0, 1} with ti = c′ and t1−i is
nullable. For the former, c → c′ holds naturally, and for the
latter, since t1−i →∗ ε (because t1−i is nullable), it follows
immediately that c→∗ ⟨c′⟩.

For the case where a path from m to m′ has length k
(k > 1), the path can be divided as two parts: a path from m̂
to m′ of length k − 1 and an edge (m, m̂) ∈ E. By the in-
duction hypothesis, there exist ĉ ∈ Nc with ĉ being decom-
posed by m̂ such that ĉ→∗ ⟨c′⟩. Further, by the construction
of the graph G, the presence of the edge (m, m̂) implies that
m decomposes a compound task c into a task network tn in
which either ĉ is the only subtask, or tn contains two sub-
tasks where one is ĉ and the other is nullable. For both cases,
we have c→∗ ⟨ĉ⟩ and henceforth c→∗ ⟨c′⟩.

Consequently, we can find all method sequences m with
c′ →∗

m ⟨c⟩ for some c′, c ∈ Nc by doing several depth-first
search in the reverse graph of the unit production graph G
(i.e., reversing the direction of each edge in G) each of which
starts from a vertex m which can decompose c and ends at
a vertex m′ which decomposes c′. For each found method
sequence m = ⟨m1 · · ·mk⟩, we shall also check whether
the precondition of each mi (1 ≤ i ≤ k) in it is satisfied.

Notably, if mi contains a subtask t which is nullable, then
we must also check whether there exists a method sequence
m′ such that t→∗

m′ ε and the precondition of every method
in it is satisfied. This is trivial because for each nullable task,
we have already found all method decomposing it into the
empty task network.

Taking together, Alg. 1 summarizes the procedure of our
TOHTN plan verification approach, given a planning prob-
lem in 2RF. We first implement the standard CYK algorithm
for computing each table entry A[i, j], and then for each
such entry A[i, j], we find all method sequences m such that
c′ →∗

m ⟨c⟩ for some c′ ∈ Nc and c ∈ A[i, j] and check
whether all method preconditions in the sequence are satis-
fied. If so, we then add c′ to A[i, j].

Lastly, we would like to discuss the time complexity of
our plan verification approach. For an input plan ⟨p1 · · · pn⟩,
one can easily recognize that the time required for visiting
all entries A[i, j] (1 ≤ i ≤ j ≤ n) is O(n3). Further, when
computing each entry A[i, j], we need to visit at most all
|M | methods for finding all c ∈ Nc with c →∗ ⟨c′⟩ and
c′ ∈ A[i, j]. Therefore, the time complexity of the CYK-
based plan verification approach is O(|M | × n3).

Theorem 2. Alg. 1 has the time complexity O(|M | × n3)
with n being the length of the input plan.

Note that the time complexity of the CYK-based approach
also emphasizes the importance of maintaining the map-
pings φ1 and φ2 mentioned earlier because |M | is normally
larger than |n| in plan verification, and hence, if we visit all
methods in each iteration like what is done in most literature,
the actual time complexity in practice would be O(n4).

Empirical Evaluation
We ran the experiments on a Xeon Gold 6242 CPU. For each
instance, each verifier was given 10 minutes of runtime and
8 GB of RAM. The experiments were done both on the TO
benchmark set which have method preconditions and on the
one which does not. The benchmark set with method pre-
conditions are from the IPC 2020 on HTN Planning which
contain 12367 plan instances from 24 domains where 10961
instances are valid, i.e., those are solutions to some plan-
ning problems, and the remaining 1406 instances are invalid.
The benchmark set without method preconditions is again
from the IPC 2020 on HTN Planning, and it is obtained by
discarding method preconditions in original planning prob-
lems. This set again contains 12367 instances where 11264
are valid, and 1103 are invalid (note the increasing number
of valid instances after removing method preconditions).

Experiment Results
We compared our CYK-based approach with the parsing-
based one by Barták et al. (2021b), which is the current
state-of-the-art TO plan verifier, and with two general (i.e.,
PO) plan verifiers which can also be employed in verifying
TO plans, i.e., the SAT-based one by Behnke, Höller, and
Biundo (2017) and the planning-based one by Höller et al.
(2022), which respectively transform a verification problem
into a SAT problem and an HTN planning problem.

In the experiments on the benchmark set with method
preconditions, we did not consider the SAT-based verifier
because it does not support method preconditions. For the
valid instances, the planning-based verifier achieve the best
performance by solving 10925 instances (99.67%). Our ap-
proach slightly underperforms it by solving 10917 instances
(99.60%) and beats the parsing-based one which solves
9158 instances (83.55%). For the invalid instances, our ap-
proach solved all 1406 instances (100%) compared with the
planning-based one and the parsing-based one which solve
1364 instances (97.01%) and 1301 instances (92.53%), re-
spectively. The results are summarized in Tab. 1 where the
rows to-val and to-inval respectively indicate the valid and
invalid instances.

Notably, though our approach slightly underperforms the
planning-based one in general, it is significantly faster than
the planning-based one in many domains. The runtime in-
formation for those domains is depicted in Fig. 1. The fig-
ure shows the runtime (y-axis) against the number of in-
stances solved (x-axis) by our approach and the planning-
based approach, respectively, i.e., how many instances can
be solved in a specific runtime. For the remaining domains,
the efficiency of these two approaches is similar, though the
planning-based one is slightly better in verifying instances
with a long plan being given. We will attach the runtime in-
formation for all domains in the supplementary material.

In the experiments on the benchmark set without method
preconditions, we included the SAT-based verifier. Our ap-
proach outperforms the others in solving both valid and in-
valid instances. Specifically, our verifier solved 9946 valid
instances (87.99%) and 981 invalid instances (92.29%). The
planning-based one solved 9679 valid instances (85.62%)
and 898 invalid instances (84.48%), and the parsing-based
one solved 7889 valid instances (69.79%) and 915 invalid in-
stances (86.08%). The SAT-based verifier has the worst per-
formance, which only solved 1036 valid instances (9.16%)
and 684 invalid ones (64.35%), see the last two rows in Tab.
1 for the summary.

Further, Fig. 2 depicts the number of solved instances
against the runtime for the evaluations on both valid and in-
valid instances on the two benchmark sets. One might ob-
serve that in solving the instances with method precondi-
tions, our approach has the similar performance compared
with the planning based one and outperforms the parsing
based one. For those without method preconditions, our ap-
proach clearly beats the others.

Discussion
We now give some discussion over our CYK-based plan ver-
ification approach compared with others, i.e., the parsing-
based, the SAT-based, and the planning-based approach.

According to the experiment results, our approach out-
performs the parsing-based one (Barták et al. 2020, 2021b)
which is the only one by now having the special treatments
for the TO configuration. We believe that the major reason
for the underperformance of the parsing-based approach is
that the approach does not restrict the number of subtasks
in each method. As a consequence, the parsing-based ap-
proach, which, like our CYK-based approach, try to find all

Benchmark Instances Parsing-based Planning-based SAT-based CYK-based (Ours)
to-val 10961 9158 (83.55) 10925 (99.67) no support 10917 (99.60)
to-inval 1406 1301 (92.53) 1364 (97.01) no support 1406 (100.00)
to-val-no-mprec 11304 7889 (69.79) 9679 (85.62) 1036 (9.16) 9946 (87.99)
to-inval-no-mprec 1063 915 (86.08) 898 (84.48) 684 (64.35) 981 (92.29)

Table 1: Table comparing runs of multiple approaches for plan verification. For each verifier, the number in each row indicates
the number of solved instances in the corresponding benchmark set, and the respective percentage indicates the coverage rate.

Figure 1: The runtime information for the domains where the CYK-based approach significantly outperforms the planning-
based approach.

possible compound tasks that can be decomposed into a sub-
sequence of a given plan, relies on an exhaustive search for
that purpose.

For example, in our approach, in order to decide whether
a compound task c can be decomposed into a subsequence
πi
j = ⟨pi · · · pj⟩ via a method m = (prec(m), c, ⟨c′1 c′2⟩), we

only have to check whether c′1 ∈ A[i, k] and c′2 ∈ A[k+1, j]
for some i ≤ k < j. In contrast, in the parsing-based ap-
proach, checking whether c can be decomposed into πi

j via
a method which has k (k ∈ N) subtasks ⟨c′1 · · · c′k⟩ requires
deciding whether πi

j can be divided into k subsequences
πi
j = ⟨π′

1 · · ·π′
k⟩ such that c′r →∗ π′

r for each 1 ≤ r ≤ k.
The latter one is clearly more computationally expensive.

Notably, the parsing-based approach does not restrict the
number of subtasks in a method for the purpose of support-
ing an additional state constraint imposed by the method
called the between-constraint which must hold between the
start and the end of the subsequence of the plan obtained
from the method. Although it is possible to transform a TO-
HTN planning problem into 2RF (or CNF) while maintain-
ing these additional constraints, it might cause an unavoid-
able quadratic explosion of the problem size, which is an-
other significant overhead. Further, despite that the parsing-
based approach supports such an additional constraint, the
benchmark set on which we did the empirical evaluation

does not feature it, and hence, this extra functionality will
not incur overheads to the approach in the experiments.

For the planning-based approach (Höller et al. 2022), it
outperforms our approach in the experiment of verifying
valid plan instances with method preconditions and under-
performs ours in the remaining three experiments. We hy-
pothesize that the outstanding performance of the planning-
based approach in verifying valid plans is due to the heuris-
tics employed by the TOHTN planner which solves the plan-
ning problem transformed from a plan verification problem.
Particularly, the heuristics might rule out some methods in
advance whose preconditions are not satisfiable and hence-
forth significantly reduce the search space, as evidenced by
its underperformance in solving instances without method
preconditions. On the other hand, the heuristics might be less
powerful when confronting an unsolvable planning problem
(i.e., verifying an invalid plan), which might be the reason
for why it underperforms the CYK-based approach in veri-
fying invalid plans (with or without method preconditions).
Generally speaking, we argue that our CYK-based approach
as a decision is still better than the planning-based approach.

Lastly, the SAT-based approach has the worst perfor-
mance compared with others. We hypothesize that this is
because phrasing a plan verification problem as a SAT for-
mula is already computationally expensive, and solving a

Planning
CYK
Parsing

100

101

102

0 1370 2740 4110 5480 6850 8220 9590 10961

TO - valid

ru
nt

im
e

in
se

co
nd

s

verified plans

CYK
Planning
Parsing

100

101

102

0 175 351 527 703 878 1054 1230 1406

TO - invalid

ru
nt

im
e

in
se

co
nd

s

verified plans

CYK
Planning
Parsing
SAT

100

101

102

0 1413 2826 4239 5652 7065 8478 9891 11304

TO - valid - noMPrec

ru
nt

im
e

in
se

co
nd

s

verified plans

CYK
Parsing
Planning
SAT

100

101

102

0 132 265 398 531 664 797 930 1063

TO - invalid - noMPrec

ru
nt

im
e

in
se

co
nd

s

verified plans

Figure 2: The number of solved instances against runtimes.

SAT problem is NP-hard as well.

Future Work
The TO plan verification approach presented in the paper is
based on the CYK parsing algorithm, which belongs to the
family of so-called chart parsing algorithms (see the work
by Jurafsky and Martin (2000) for more details about chart
parsing algorithms). It is thus natural to think of adapting
some more sophisticated charting parsing algorithms like the
Earley parsing algorithm (Earley 1970) to develop a more
efficient plan verification approach for TOHTN planning.

Further, although our paper focus solely on TOHTN plan
verification, some of our ideas might be exploited and com-
bined with some other parsing based plan verification ap-
proaches, for example, the one by Barták, Maillard, and Car-
doso (2018) and by Barták et al. (2020), which work for
general HTN planning or even an HTN planning formal-
ism supporting advanced features, e.g., prevail conditions.
Specifically, when using those approaches, we could con-
sider some preprocessing for an input plan verification prob-
lem to turn it into a more digestible form to make the parsing

more systematic, just like how we transform a TOHTN plan-
ning problem into 2NF in our paper.

Conclusion
In this paper, we developed a totally ordered HTN plan ver-
ification approach that is tailored to method preconditions
by extending the standard CYK parsing algorithm. The em-
pirical evaluation results show that our approach signifi-
cantly outperforms another parsing-based plan verification
approach by Barták et al. (2020; 2021b) which is also the
only approach by now features the special treatments for the
TO configuration. Further, though the approach slightly un-
derperforms the state-of-the-art plan verifier by Höller et al.
(2022) when input plans are indeed solutions, it has better
performance when an input plan is invalid. Additionally, our
approach always has better performance when method pre-
conditions are not considered independent of whether an in-
put plan is valid or not. We thus still regard our approach as
a better decision procedure.

Acknowledgment
Simona Ondrčková is (partially) supported by SVV project
number 260 575 and by the Charles University project GA
UK number 280122.

Further, we would like to appreciate the anonymous re-
viewers from the 2022 International Symposium on Combi-
natorial Search (to which this paper is submitted before) who
provided a great many helpful comments on how to improve
this paper.

References
Barták, R.; Maillard, A.; and Cardoso, R. C. 2018. Vali-
dation of Hierarchical Plans via Parsing of Attribute Gram-
mars. In ICAPS 2018, 11–19. AAAI.
Barták, R.; Ondrčková, S.; Behnke, G.; and Bercher, P.
2021a. Correcting Hierarchical Plans by Action Deletion.
In KR 2021, 99–109. IJCAI.
Barták, R.; Ondrčková, S.; Behnke, G.; and Bercher, P.
2021b. On the Verification of Totally-Ordered HTN Plans.
In ICTAI 2021, 263–267. IEEE.
Barták, R.; Ondrčková, S.; Maillard, A.; Behnke, G.; and
Bercher, P. 2020. A Novel Parsing-based Approach for Ver-
ification of Hierarchical Plans. In ICTAI 2020, 118–125.
IEEE.
Behnke, G.; Höller, D.; and Biundo, S. 2017. This Is a Solu-
tion! (... But Is It Though?) - Verifying Solutions of Hierar-
chical Planning Problems. In PICAPS 2017, 20–28. AAAI.
Behnke, G.; Höller, D.; and Biundo, S. 2018. totSAT -
Totally-Ordered Hierarchical Planning Through SAT. In
AAAI 2018, 6110–6118. AAAI.
Behnke, G.; and Speck, D. 2021. Symbolic Search for Op-
timal Total-Order HTN Planning. In AAAI 2021, 11744–
11754. AAAI.
Bercher, P.; Alford, R.; and Höller, D. 2019. A Survey on
Hierarchical Planning - One Abstract Idea, Many Concrete
Realizations. In IJCAI 2019, 6267–6275. IJCAI.

Chomsky, N. 1959. On Certain Formal Properties of Gram-
mars. Information and Control, 2(2): 137–167.
Earley, J. 1970. An Efficient Context-Free Parsing Algo-
rithm. Communications of the ACM, 13(2): 94–102.
Erol, K.; Hendler, J. A.; and Nau, D. S. 1996. Complex-
ity Results for HTN Planning. Annals of Mathematics and
Artificial Intelligence, 18(1): 69–93.
Geier, T.; and Bercher, P. 2011. On the Decidability of HTN
Planning with Task Insertion. In IJCAI 2011, 1955–1961.
IJCAI.
Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2014.
Language Classification of Hierarchical Planning Problems.
In Proceedings of the 21st European Conference on Artifi-
cial Intelligence, ECAI 2014, 447–452. IOS.
Höller, D.; Wichlacz, J.; Bercher, P.; and Behnke, G. 2022.
Compiling HTN Plan Verification Problems into HTN Plan-
ning Problems. In ICAPS 2022. AAAI.
Hopcroft, J. E.; Motwani, R.; and Ullman, J. D. 2007. Intro-
duction to Automata Theory, Languages, and Computation.
Addison-Wesley.
Jurafsky, D.; and Martin, J. H. 2000. Speech and Language
Processing: An Introduction to Natural Language Process-
ing, Computational Linguistics, and Speech Recognition.
Prentice Hall PTR.
Lange, M.; and Leiß, H. 2009. To CNF or not to CNF?
An Efficient Yet Presentable Version of the CYK Algorithm.
Informatica Didactica, 8: 1–21.
Lin, S.; and Bercher, P. 2022. On the Expressive Power of
Planning Formalisms in Conjunction with LTL. In ICAPS
2022. AAAI.
Myers, K. L.; Jarvis, P.; Tyson, M.; and Wolverton, M. 2003.
A Mixed-initiative Framework for Robust Plan Sketching.
In ICAPS 2003, 256–266. AAAI.
Sakai, I. 1961. Syntax in Universal Translation. In Proceed-
ings of the International Conference on Machine Translation
and Applied Language Analysis, 593 – 608.

