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Motivation and Objective

o The TOHTN instances in the IPC 2020 on HTN planning
significantly outnumber the partial order ones.

o Verification is important to test the correctness of HT'N
systems. Three approaches exist so far.

® One appraoch has special treatment for total order HTNs.
¢ It relies on parsing and shows promising results!

Objective

Speed up TO-HTN plan verification.
o Approach should support method preconditions.

(We do so by extending the CYK parsing algorithm.)
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Background

A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

o F: A set of propositions

o A: A set of primitive
tasks

o C: A set of compound
tasks

00: A—=27 x27 x 27

o MC2F xCx (AUC)™:
A set of methods

o ¢y € C: The initial task

o s; € 27: The initial state
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TOHTN Planning Problems and CFGs

The basis for using the CYK algorithm in plan verification is
the connection between a TOHTN planning problem and a
context-free grammar:

o A primitive task is equivalent to a terminal symbol.
o A compound task is equivalent to a non-terminal symbol.

o A method without preconditions is equivalent to a
production rule.

o The set of solutions to a TOHTN problem is the language
of the grammar.
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Procedure

Given a plan m = (a1 - - - ap) (resp. a word) and a TOHTN
planning problem P (resp. a CFG):
o P should be in Chomsky Normal Form.

¢ Every method decomposes a compound task into either a
primitive task or two compound tasks.

o For every m; j = (a; - - - a;), we memorize the set A[i, j] of all
compound tasks that can be decomposed into m; ;:

{c|c—><p¢>} ifi=j
Ali, j] = { c— (c) &), ) € Ali, K] } .
c ifi<jy

heAk+1,j,i<k<j
i.e.,, when i < j, we add a task ¢ to the entry A[, j] if ¢ can
be decomposed into (¢} ¢}) such that ¢} can be decomposed
into m; ;, and ¢ into w41 ; for some i < k < j.
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TOHTN Plan Verification

| Modification #1 |

Instead of transforming a TOHTN problem into CNF, we
transform it into 2-Norm Form (2NF).

o Every decomposition method decomposes a
compound task into at most two subtasks
(and they can be mixed primitive/compound).
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Instead of transforming a TOHTN problem into CNF, we
transform it into 2-Norm Form (2NF).

o Every decomposition method decomposes a
compound task into at most two subtasks
(and they can be mixed primitive/compound).

Using 2NF can avoid the quadratic explosion of the problem
size caused by transforming the problem into CNF.

o E.g., consider a unit production sequence c¢; — -+ — ¢y,
and ¢, can be decomposed into any of (a1 b1),- -, {(am bpm).
® For each ¢;, we need to create m extra methods which
decomposes ¢; into (a;b;), 1 <j <m.
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TOHTN Plan Verification

| Modification #1 |

Instead of transforming a TOHTN problem into CNF, we
transform it into 2-Norm Form (2NF).

o Every decomposition method decomposes a
compound task into at most two subtasks
(and they can be mixed primitive/compound).

Using 2NF can avoid the quadratic explosion of the problem
size caused by transforming the problem into CNF.
o E.g., consider a unit production sequence c¢; — -+ — ¢y,
and ¢, can be decomposed into any of (a1 b1),- -, {(am bpm).
® For each ¢;, we need to create m extra methods which
decomposes ¢; into (a;b;), 1 <j <m.
o When computing each cell Al j|, we need to search for all
method sequences m with ¢ =% (¢/) with ¢ € A[i, j].
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TOHTN Plan Verification

Modification #2 ]

We have to check whether the precondition prec(m) of a
method m is satisfied.

Let m = (aj - - - a,) be the given plan.
o We can compute the state sequence (sq - - - s,) with sop = sy,
which is obtained by applying 7 in s;.
o When checking whether a task ¢ can be decomposed into
m;; via a method m, we check whether prec(m) C s;.
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Experiment Configuration

We compare our approach against three existing plan
verification approaches:
o Another parsing-based approach.

® Builds on the Rete parser.
¢ It does not exploit any normal forms.
® Supports lifted input.

o A planning-based approach (compiles verification problem
into HTN planning problem).
® Can use existing HTN planning heuristics
¢ Usually not a decision procedure
o A SAT-based approach (compiles it into SAT problem).
¢ It encodes the plan verification problem as a SAT formula.
® Does act as decision procedure.
® Does not support method preconditions.
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Experiment Results

Benchmark Instances Parsing-based Planning-based SAT-based CYK-based (Ours)
to-val 10961 9158 (83.55%) 10925 (99.67%) Not support 10917 (99.60%)
to-inval 1406 1301 (92.53%) 1364 (97.01%)  Not support 1406 (100.00%)
to-val-no-mprec 11304 7889 (69.79%) 9679 (85.62%) 1036 (9.16%) 9946 (87.99%)
to-inval-no-mprec 1063 915 (86.08%) 898  (84.48%) 684 (62.01%) 981 (88.94%)

o Our approach outperforms the parsing-based one and the
SAT-based one.

o Our approach slightly underperforms the planning-based
one in verifying valid plans with method preconditions but
is better in all the remaining cases.

® This might because the planning-based approach exploits
some heuristic which performs well in verifying long plans.

® Such a heuristic is less useful when the transformed
planning problem is unsolvable.

® We believe that our approach acts as a better decision
procedure compared with the planning-based one.
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Conclusion

We developed a CYK-based TOHTN plan verification method.

o Our approach outperforms the existing SAT-based and
parsing-based approaches.

o Although our approach slightly underperforms the
planning-based one in verifying valid plans with method
preconditions (8 instances of ~11.000), we believe it still
acts as a better decision procedure.
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