On Total-Order HTN Plan Verification with Method Preconditions – An Extension of the CYK Parsing Algorithm

Songtuan Lin¹, Gregor Behnke², Simona Ondrčková³, Roman Barták³, <u>Pascal Bercher</u>¹

 ¹School of Computing, The Australian National University ²ILLC, University of Amsterdam
³Faculty of Mathematics and Physics, Charles University
¹{songtuan.lin, pascal.bercher}@anu.edu.au, ²g.behnke@uva.nl, ³{ondrckova, bartak}@ktiml.mff.cuni.cz

February 2023

Australian National University

- The TOHTN instances in the IPC 2020 on HTN planning significantly outnumber the partial order ones.
- Verification is important to test the correctness of HTN systems. Three approaches exist so far.
 - One appraoch has special treatment for total order HTNs.
 - It relies on parsing and shows promising results!

Objective

Speed up TO-HTN plan verification.

• Approach should support method preconditions.

(We do so by extending the CYK parsing algorithm.)

Introduction $\circ \bullet$		
Background		

 c_I

- \mathcal{F} : A set of propositions
- \mathcal{A} : A set of primitive tasks
- C: A set of compound tasks
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}}$
- $\mathcal{M} \subseteq 2^{\mathcal{F}} \times \mathcal{C} \times (\mathcal{A} \cup \mathcal{C})^*$: A set of methods
- $c_I \in \mathcal{C}$: The initial task
- $s_I \in 2^{\mathcal{F}}$: The initial state

Introduction $\circ \bullet$		
Background		

- \mathcal{F} : A set of propositions
- \mathcal{A} : A set of primitive tasks
- C: A set of compound tasks
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}}$
- $\mathcal{M} \subseteq 2^{\mathcal{F}} \times \mathcal{C} \times (\mathcal{A} \cup \mathcal{C})^*$: A set of methods
- $c_I \in \mathcal{C}$: The initial task
- $s_I \in 2^{\mathcal{F}}$: The initial state

Introduction $\circ \bullet$		
Background		

- \mathcal{F} : A set of propositions
- \mathcal{A} : A set of primitive tasks
- C: A set of compound tasks
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}}$
- $\mathcal{M} \subseteq 2^{\mathcal{F}} \times \mathcal{C} \times (\mathcal{A} \cup \mathcal{C})^*$: A set of methods
- $c_I \in \mathcal{C}$: The initial task
- $s_I \in 2^{\mathcal{F}}$: The initial state

Introduction $\circ \bullet$		
Background		

CI

- \mathcal{F} : A set of propositions
- \mathcal{A} : A set of primitive tasks
- C: A set of compound tasks
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}}$
- $\mathcal{M} \subseteq 2^{\mathcal{F}} \times \mathcal{C} \times (\mathcal{A} \cup \mathcal{C})^*$: A set of methods
- $c_I \in \mathcal{C}$: The initial task
- $s_I \in 2^{\mathcal{F}}$: The initial state

Introduction $\circ \bullet$		
Background		

- \mathcal{F} : A set of propositions
- \mathcal{A} : A set of primitive tasks
- C: A set of compound tasks
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}}$
- $\mathcal{M} \subseteq 2^{\mathcal{F}} \times \mathcal{C} \times (\mathcal{A} \cup \mathcal{C})^*$: A set of methods
- $c_I \in \mathcal{C}$: The initial task
- $s_I \in 2^{\mathcal{F}}$: The initial state

Introduction $\circ \bullet$		
Background		

- \mathcal{F} : A set of propositions
- \mathcal{A} : A set of primitive tasks
- C: A set of compound tasks
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}}$
- $\mathcal{M} \subseteq 2^{\mathcal{F}} \times \mathcal{C} \times (\mathcal{A} \cup \mathcal{C})^*$: A set of methods
- $c_I \in \mathcal{C}$: The initial task
- $s_I \in 2^{\mathcal{F}}$: The initial state

Introduction $\circ \bullet$		
Background		

- \mathcal{F} : A set of propositions
- \mathcal{A} : A set of primitive tasks
- C: A set of compound tasks
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}}$
- $\mathcal{M} \subseteq 2^{\mathcal{F}} \times \mathcal{C} \times (\mathcal{A} \cup \mathcal{C})^*$: A set of methods
- $c_I \in \mathcal{C}$: The initial task
- $s_I \in 2^{\mathcal{F}}$: The initial state

Introduction $\circ \bullet$		
Background		

- \mathcal{F} : A set of propositions
- \mathcal{A} : A set of primitive tasks
- C: A set of compound tasks
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}}$
- $\mathcal{M} \subseteq 2^{\mathcal{F}} \times \mathcal{C} \times (\mathcal{A} \cup \mathcal{C})^*$: A set of methods
- $c_I \in \mathcal{C}$: The initial task
- $s_I \in 2^{\mathcal{F}}$: The initial state

Introduction $\circ \bullet$		
Background		

- \mathcal{F} : A set of propositions
- \mathcal{A} : A set of primitive tasks
- C: A set of compound tasks
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}}$
- $\mathcal{M} \subseteq 2^{\mathcal{F}} \times \mathcal{C} \times (\mathcal{A} \cup \mathcal{C})^*$: A set of methods
- $c_I \in \mathcal{C}$: The initial task
- $s_I \in 2^{\mathcal{F}}$: The initial state

- \mathcal{F} : A set of propositions
- \mathcal{A} : A set of primitive tasks
- C: A set of compound tasks
- $\delta: \mathcal{A} \to 2^{\mathcal{F}} \times 2^{\mathcal{F}} \times 2^{\mathcal{F}}$
- $\mathcal{M} \subseteq 2^{\mathcal{F}} \times \mathcal{C} \times (\mathcal{A} \cup \mathcal{C})^*$: A set of methods
- $c_I \in \mathcal{C}$: The initial task
- $s_I \in 2^{\mathcal{F}}$: The initial state

The basis for using the CYK algorithm in plan verification is the connection between a TOHTN planning problem and a context-free grammar:

- A primitive task is equivalent to a terminal symbol.
- A compound task is equivalent to a non-terminal symbol.
- A method *without preconditions* is equivalent to a production rule.
- The set of solutions to a TOHTN problem is the language of the grammar.

Given a plan $\pi = \langle a_1 \cdots a_n \rangle$ (*resp.* a word) and a TOHTN planning problem \mathcal{P} (*resp.* a CFG):

- $\bullet \ \mathcal{P}$ should be in Chomsky Normal Form.
 - Every method decomposes a compound task into either a primitive task or two compound tasks.
- For every $\pi_{i,j} = \langle a_i \cdots a_j \rangle$, we memorize the set A[i, j] of all compound tasks that can be decomposed into $\pi_{i,j}$:

$$A[i,j] = \begin{cases} \left\{ c \mid c \to \langle p_i \rangle \right\} & \text{if } i = j \\ \left\{ c \mid c \to \langle c'_1 \, c'_2 \rangle, c'_1 \in A[i,k] \\ c'_2 \in A[k+1,j], i \le k < j \end{cases} & \text{if } i < j \end{cases}$$

i.e., when i < j, we add a task c to the entry A[i, j] if c can be decomposed into $\langle c'_1 c'_2 \rangle$ such that c'_1 can be decomposed into $\pi_{i,k}$ and c'_2 into $\pi_{k+1,j}$ for some $i \leq k < j$.

Modification #1

Instead of transforming a TOHTN problem into CNF, we transform it into 2-Norm Form (2NF).

• Every decomposition method decomposes a compound task into *at most* two subtasks (and they can be mixed primitive/compound).

Modification #1

Instead of transforming a TOHTN problem into CNF, we transform it into 2-Norm Form (2NF).

• Every decomposition method decomposes a compound task into *at most* two subtasks (and they can be mixed primitive/compound).

Using 2NF can avoid the quadratic explosion of the problem size caused by transforming the problem into CNF.

- E.g., consider a unit production sequence $c_1 \to \cdots \to c_n$, and c_n can be decomposed into any of $\langle a_1 b_1 \rangle, \cdots, \langle a_m b_m \rangle$.
 - For each c_i , we need to create m extra methods which decomposes c_i into $\langle a_j b_j \rangle$, $1 \le j \le m$.

Modification #1

Instead of transforming a TOHTN problem into CNF, we transform it into 2-Norm Form (2NF).

• Every decomposition method decomposes a compound task into *at most* two subtasks (and they can be mixed primitive/compound).

Using 2NF can avoid the quadratic explosion of the problem size caused by transforming the problem into CNF.

- E.g., consider a unit production sequence $c_1 \to \cdots \to c_n$, and c_n can be decomposed into any of $\langle a_1 b_1 \rangle, \cdots, \langle a_m b_m \rangle$.
 - For each c_i , we need to create m extra methods which decomposes c_i into $\langle a_j b_j \rangle$, $1 \le j \le m$.
- When computing each cell A[i, j], we need to search for all method sequences \overline{m} with $c \to_{\overline{m}}^* \langle c' \rangle$ with $c' \in A[i, j]$.

Modification #2

We have to check whether the precondition prec(m) of a method m is satisfied.

Let $\pi = \langle a_1 \cdots a_n \rangle$ be the given plan.

- We can compute the state sequence $\langle s_0 \cdots s_n \rangle$ with $s_0 = s_I$, which is obtained by applying π in s_I .
- When checking whether a task c can be decomposed into $\pi_{i,j}$ via a method m, we check whether $prec(m) \subseteq s_i$.

Introduction CYK Algorithm Plan Verification Experiments Conclusion \circ

Experiment Configuration

We compare our approach against three existing plan verification approaches:

- Another parsing-based approach.
 - Builds on the Rete parser.
 - It does not exploit any normal forms.
 - Supports lifted input.
- A planning-based approach (compiles verification problem into HTN planning problem).
 - Can use existing HTN planning heuristics
 - Usually not a decision procedure
- A SAT-based approach (compiles it into SAT problem).
 - It encodes the plan verification problem as a SAT formula.
 - Does act as decision procedure.
 - Does not support method preconditions.

				Exper 0●0	iments Conc o	
Experiment	Results					
Benchmark	Instances	Parsing-based	Planning-based	SAT-based	CYK-based (Ours)	
to-val	10961	9158 (83.55%)	10925 (99.67%)	Not support	10917 (99.60%)	
to-inval	1406	1301 (92.53%)	1364 (97.01%)	Not support	1406 (100.00%)	
to-val-no-mpree	c 11304	7889 (69.79%)	9679 (85.62%)	1036 (9.16%)	9946 (87.99%)	
to-inval-no-mp	rec 1063	915 (86.08%)	898 (84.48%)	684 (62.01%)	981 (88.94%)	

- Our approach outperforms the parsing-based one and the SAT-based one.
- Our approach slightly underperforms the planning-based one in verifying valid plans with method preconditions but is better in all the remaining cases.
 - This might because the planning-based approach exploits some heuristic which performs well in verifying long plans.
 - Such a heuristic is less useful when the transformed planning problem is unsolvable.
 - We believe that our approach acts as a better decision procedure compared with the planning-based one.

Runtime against solved instances (with method preconditions), planning-based approach vs. ours: Runtime is significanly lower for our apporach.

		$\operatorname{Conclusion}_{ullet}$
Conclusion		

We developed a CYK-based TOHTN plan verification method.

- Our approach outperforms the existing SAT-based and parsing-based approaches.
- Although our approach slightly underperforms the planning-based one in verifying valid plans with method preconditions (8 instances of ≈ 11.000), we believe it still acts as a better decision procedure.