On Total-Order HTN Plan Verification with Method Preconditions

— An Extension of the CYK Parsing Algorithm

Songtuan Lin'!, Gregor Behnke?, Simona Ondrékova®, Roman Bartak?,
Pascal Bercher?
1School of Computing, The Australian National University
2ILLC7 University of Amsterdam
3Faculty of Mathematics and Physics, Charles University

1{song‘cuan.lin, pascal.bercher}@anu.edu.au, 2g.behnke@uva.n1,
3 {ondrckova, bartak }@ktiml.mff.cuni.cz

February 2023

| Australian
<=, National
University

[1o}

Introduction CYK Algorithm Plan Verification yeriments Conclusion

Motivation and Objective

o The TOHTN instances in the IPC 2020 on HTN planning
significantly outnumber the partial order ones.

o Verification is important to test the correctness of HT'N
systems. Three approaches exist so far.

® One appraoch has special treatment for total order HTNs.
¢ It relies on parsing and shows promising results!

Objective

Speed up TO-HTN plan verification.
o Approach should support method preconditions.

(We do so by extending the CYK parsing algorithm.)

1.10

Introduction CYK Algorithm Plan Verification Experiments Conclusion

(o] }

Background

A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

o F: A set of propositions

o A: A set of primitive
tasks

o C: A set of compound
tasks

00: A—=27 x27 x 27

o MC2F xCx (AUC)™:
A set of methods

o ¢y € C: The initial task

o s; € 27: The initial state

2.10

Introduction CYK Algorithm Plan Verification Experiments Conclusion

Background

A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

o F: A set of propositions

o A: A set of primitive
tasks

o C: A set of compound
tasks

00: A—=27 x27 x 27

o MC2F xCx (AUC)™:
A set of methods

o ¢y € C: The initial task

o s; € 27: The initial state

2.10

Introduction CYK Algorithm Plan Verification Experiments Conclusion

Background

A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

o F: A set of propositions

o A: A set of primitive
tasks

. o C: A set of compound
tasks

00: A—=27 x27 x 27

o MC2F xCx (AUC)™:
A set of methods

o ¢y € C: The initial task

o s; € 27: The initial state

2.10

Introduction CYK Algorithm
oe 00

Plan Verification

Experiments

Conclusion
Background
A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

o F: A set of propositions
o A: A set of primitive

o tasks

e '~\ e C: A set of compound
\‘. tasks
'l‘ 0 6: A—2F x2F x2F
o MC2F xCx(AUC)*
°

A set of methods
o ¢y € C: The initial task
o s; € 27: The initial state

2.10

Introduction CYK Algorithm Plan Verification Experiments Conclusion

(o] }

Background

A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

o F: A set of propositions

o A: A set of primitive
tasks

o C: A set of compound
tasks

00: A—=27 x27 x 27

o MC2F xCx (AUC)™:
A set of methods

o ¢y € C: The initial task

o s; € 27: The initial state

2.10

Introduction CYK Algorithm Plan Verification Experiments Conclusion

Background

A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

o F: A set of propositions
o A: A set of primitive
o tasks
7 o C: A set of compound
tasks
00: A—=27 x27 x 27
o MC2F xCx (AUC)™:
A set of methods
o ¢y € C: The initial task
o s; € 27: The initial state

2.10

Introduction CYK Algorithm
oe 00

Plan Verification

Experiments

Conclusion

Background

A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

o F: A set of propositions

o A: A set of primitive

o tasks
‘ﬁ;“"/’ "\ o C: A set of compound
N \‘. tasks
//i\% 'l‘ 0 6: A—2F x2F x2F
/\ o MC2F xCx (AUC)*:
e—e)

A set of methods
o ¢y € C: The initial task
o s; € 27: The initial state

2.10

Introduction CYK Algorithm

Plan Verification

Experiments Conclusion

Background

A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

o F: A set of propositions

o A: A set of primitive
tasks

'\‘ o C: A set of compound

\ ll :] taSkS
\ >
\ [

i r 0 6: A—2" x27 x2F
: /‘\ o M C2F xCx (AUQC)*:
o ° A set of methods
o ¢y € C: The initial task
o s; € 27: The initial state

2.10

(o] }

Background

Introduction CYK Algorithm

Plan Verification

Experiments

Conclusion

A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

Ccr

Y

- \

O 7 '

m !

R !

NI !

/ \ \

/ \ 1
! Y

2.10

o F: A set of propositions

o A: A set of primitive
tasks

o C: A set of compound
tasks

00: A—=27 x27 x 27

o MC2F xCx (AUC)™:
A set of methods

o ¢y € C: The initial task

o s; € 27: The initial state

Introduction CYK Algorithm 12
) 00

an Verification

eriments

Background

A TOHTN planning problem P = ((F,A,C,d, M), ¢y, s1):

o F: A set of propositions
o A: A set of primitive

o tasks
;@“’// l'\ precondition o C: A set of compound
AN | . tasks
/ i \‘\j\/,,x'\r"” ECED 0 6: A—2" x27 x2F
S | o M C2F xCx (AUQC)*:
s1 |-e—e——0—e A set of methods
satisfied

o ¢y € C: The initial task
o s; € 27: The initial state

2.10

Introduction CYK Algorithm 2 Verification eriments Conclusion
[o]e] [le] ocC o]

TOHTN Planning Problems and CFGs

The basis for using the CYK algorithm in plan verification is
the connection between a TOHTN planning problem and a
context-free grammar:

o A primitive task is equivalent to a terminal symbol.
o A compound task is equivalent to a non-terminal symbol.

o A method without preconditions is equivalent to a
production rule.

o The set of solutions to a TOHTN problem is the language
of the grammar.

3.10

Introduction CYK Algorithm Plan Verification yeriments Conclusion
[e]e} oe 00 @© o

Procedure

Given a plan m = (a1 - - - ap) (resp. a word) and a TOHTN
planning problem P (resp. a CFG):
o P should be in Chomsky Normal Form.

¢ Every method decomposes a compound task into either a
primitive task or two compound tasks.

o For every m; j = (a; - - - a;), we memorize the set A[i, j] of all
compound tasks that can be decomposed into m; ;:

{c|c—><p¢>} ifi=j
Ali, j] = { c— (c) &),) € Ali, K] } .
c ifi<jy

heAk+1,j,i<k<j
i.e.,, when i < j, we add a task ¢ to the entry A[, j] if ¢ can
be decomposed into (¢} ¢}) such that ¢} can be decomposed
into m; ;, and ¢ into w41 ; for some i < k < j.

4.10

Introduction CYK Algorithm Plan Verification Experiments Conclusion
00 °0 000 o

TOHTN Plan Verification

| Modification #1 |

Instead of transforming a TOHTN problem into CNF, we
transform it into 2-Norm Form (2NF).

o Every decomposition method decomposes a
compound task into at most two subtasks
(and they can be mixed primitive/compound).

5.10

Introduction CYK Algorithm Plan Verification eriments Conclusion

o0

TOHTN Plan Verification

| Modification #1 |

Instead of transforming a TOHTN problem into CNF, we
transform it into 2-Norm Form (2NF).

o Every decomposition method decomposes a
compound task into at most two subtasks
(and they can be mixed primitive/compound).

Using 2NF can avoid the quadratic explosion of the problem
size caused by transforming the problem into CNF.

o E.g., consider a unit production sequence c¢; — -+ — ¢y,
and ¢, can be decomposed into any of (a1 b1),- -, {(am bpm).
® For each ¢;, we need to create m extra methods which
decomposes ¢; into (a;b;), 1 <j <m.

5.10

Introduction CYK Algorithm Plan Verification yeriments Conclusion
00 00 [1o} @ o

TOHTN Plan Verification

| Modification #1 |

Instead of transforming a TOHTN problem into CNF, we
transform it into 2-Norm Form (2NF).

o Every decomposition method decomposes a
compound task into at most two subtasks
(and they can be mixed primitive/compound).

Using 2NF can avoid the quadratic explosion of the problem
size caused by transforming the problem into CNF.
o E.g., consider a unit production sequence c¢; — -+ — ¢y,
and ¢, can be decomposed into any of (a1 b1),- -, {(am bpm).
® For each ¢;, we need to create m extra methods which
decomposes ¢; into (a;b;), 1 <j <m.
o When computing each cell Al j|, we need to search for all
method sequences m with ¢ =% (¢/) with ¢ € A[i, j].

5.10

Introduction CYK Algorithm Plan Verification Experiments Conclusion

(o] J

TOHTN Plan Verification

Modification #2]

We have to check whether the precondition prec(m) of a
method m is satisfied.

Let m = (aj - - - a,) be the given plan.
o We can compute the state sequence (sq - - - s,) with sop = sy,
which is obtained by applying 7 in s;.
o When checking whether a task ¢ can be decomposed into
m;; via a method m, we check whether prec(m) C s;.

6.10

Introduction Algorithm n Verification Experiments Conclusion

@00

Experiment Configuration

We compare our approach against three existing plan
verification approaches:
o Another parsing-based approach.

® Builds on the Rete parser.
¢ It does not exploit any normal forms.
® Supports lifted input.

o A planning-based approach (compiles verification problem
into HTN planning problem).
® Can use existing HTN planning heuristics
¢ Usually not a decision procedure
o A SAT-based approach (compiles it into SAT problem).
¢ It encodes the plan verification problem as a SAT formula.
® Does act as decision procedure.
® Does not support method preconditions.

7.10

Introduction { Algorithm > ati Experiments Conc

oeo

Experiment Results

Benchmark Instances Parsing-based Planning-based SAT-based CYK-based (Ours)
to-val 10961 9158 (83.55%) 10925 (99.67%) Not support 10917 (99.60%)
to-inval 1406 1301 (92.53%) 1364 (97.01%) Not support 1406 (100.00%)
to-val-no-mprec 11304 7889 (69.79%) 9679 (85.62%) 1036 (9.16%) 9946 (87.99%)
to-inval-no-mprec 1063 915 (86.08%) 898 (84.48%) 684 (62.01%) 981 (88.94%)

o Our approach outperforms the parsing-based one and the
SAT-based one.

o Our approach slightly underperforms the planning-based
one in verifying valid plans with method preconditions but
is better in all the remaining cases.

® This might because the planning-based approach exploits
some heuristic which performs well in verifying long plans.

® Such a heuristic is less useful when the transformed
planning problem is unsolvable.

® We believe that our approach acts as a better decision
procedure compared with the planning-based one.

8.10

runtime in seconds

runtime in seconds

Introduc

Runtime

Monroe-Partially-Observable

P

an Verific

Monroe-Fully-Observable Entertainment
— Orkbased — CrKbased — CrKbased
~—— Planning-based ~— Planning-based ~— Planning-based
10! 107
w0t 2 2
g g
4 § 6x107
£ 610 <
3 2 4102
6x1077 £ £ 4x10°
H H -
4x107? 3x10
ax10? 3x102 2x102
0 50 1 1 200 0 50 100 150 200 250 0 20 40 120 140 160
number of solved instances number of solved instances number of solved instances
Woodworking AssemblyHierarchical Snake
— CYkbased — Crkbased — Crkbased
~—— Planning-based —— Planning-based —— Planning-based
107 H § 10
8100 i
3 E
102

0 100

200 300 400
number of solved instances

25 50 75 100 125

number of solved instances

150 175

200

0 25 50 7 125 150

5 175
number of solved instances

Runtime against solved instances (with method preconditions),
planning-based approach vs. ours:
Runtime is significanly lower for our apporach.

9.10

Introduction CYK Algorithm Plan Verification yeriments Conclusion
00 00 00 (o °

Conclusion

We developed a CYK-based TOHTN plan verification method.

o Our approach outperforms the existing SAT-based and
parsing-based approaches.

o Although our approach slightly underperforms the
planning-based one in verifying valid plans with method
preconditions (8 instances of ~11.000), we believe it still
acts as a better decision procedure.

10.10

	Introduction
	CYK Algorithm
	Plan Verification
	Experiments
	Conclusion

