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Motivation and Objective

The TOHTN instances in the IPC 2020 on HTN planning
significantly outnumber the partial order ones.

Verification is important to test the correctness of HTN
systems. Three approaches exist so far.

• One appraoch has special treatment for total order HTNs.
• It relies on parsing and shows promising results!

Objective

Speed up TO-HTN plan verification.

Approach should support method preconditions.

(We do so by extending the CYK parsing algorithm.)
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Background

A TOHTN planning problem P = ((F ,A, C, δ,M), cI , sI):

cI

sI

precondition

satisfied

F : A set of propositions

A: A set of primitive
tasks

C: A set of compound
tasks

δ : A → 2F × 2F × 2F

M ⊆ 2F × C × (A ∪ C)∗:
A set of methods

cI ∈ C: The initial task

sI ∈ 2F : The initial state
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TOHTN Planning Problems and CFGs

The basis for using the CYK algorithm in plan verification is
the connection between a TOHTN planning problem and a
context-free grammar:

A primitive task is equivalent to a terminal symbol.

A compound task is equivalent to a non-terminal symbol.

A method without preconditions is equivalent to a
production rule.

The set of solutions to a TOHTN problem is the language
of the grammar.

3.10
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Procedure

Given a plan π = ⟨a1 · · · an⟩ (resp. a word) and a TOHTN
planning problem P (resp. a CFG):

P should be in Chomsky Normal Form.
• Every method decomposes a compound task into either a

primitive task or two compound tasks.

For every πi,j = ⟨ai · · · aj⟩, we memorize the set A[i, j] of all
compound tasks that can be decomposed into πi,j :

A[i, j] =


{
c | c → ⟨pi⟩

}
if i = j{

c

∣∣∣∣∣ c → ⟨c′1 c′2⟩, c′1 ∈ A[i, k]

c′2 ∈ A[k + 1, j], i ≤ k < j

}
if i < j

i.e., when i < j, we add a task c to the entry A[i, j] if c can
be decomposed into ⟨c′1 c′2⟩ such that c′1 can be decomposed
into πi,k and c′2 into πk+1,j for some i ≤ k < j.
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TOHTN Plan Verification

Modification #1

Instead of transforming a TOHTN problem into CNF, we
transform it into 2-Norm Form (2NF).

Every decomposition method decomposes a
compound task into at most two subtasks
(and they can be mixed primitive/compound).

Using 2NF can avoid the quadratic explosion of the problem
size caused by transforming the problem into CNF.

E.g., consider a unit production sequence c1 → · · · → cn,
and cn can be decomposed into any of ⟨a1 b1⟩, · · · , ⟨am bm⟩.

• For each ci, we need to create m extra methods which
decomposes ci into ⟨aj bj⟩, 1 ≤ j ≤ m.

When computing each cell A[i, j], we need to search for all
method sequences m with c →∗

m ⟨c′⟩ with c′ ∈ A[i, j].
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TOHTN Plan Verification

Modification #2

We have to check whether the precondition prec(m) of a
method m is satisfied.

Let π = ⟨a1 · · · an⟩ be the given plan.

We can compute the state sequence ⟨s0 · · · sn⟩ with s0 = sI ,
which is obtained by applying π in sI .

When checking whether a task c can be decomposed into
πi,j via a method m, we check whether prec(m) ⊆ si.

6.10
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Experiment Configuration

We compare our approach against three existing plan
verification approaches:

Another parsing-based approach.
• Builds on the Rete parser.
• It does not exploit any normal forms.
• Supports lifted input.

A planning-based approach (compiles verification problem
into HTN planning problem).

• Can use existing HTN planning heuristics
• Usually not a decision procedure

A SAT-based approach (compiles it into SAT problem).
• It encodes the plan verification problem as a SAT formula.
• Does act as decision procedure.
• Does not support method preconditions.

7.10
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Experiment Results

Benchmark Instances Parsing-based Planning-based SAT-based CYK-based (Ours)

to-val 10961 9158 (83.55%) 10925 (99.67%) Not support 10917 (99.60%)
to-inval 1406 1301 (92.53%) 1364 (97.01%) Not support 1406 (100.00%)
to-val-no-mprec 11304 7889 (69.79%) 9679 (85.62%) 1036 (9.16%) 9946 (87.99%)
to-inval-no-mprec 1063 915 (86.08%) 898 (84.48%) 684 (62.01%) 981 (88.94%)

Our approach outperforms the parsing-based one and the
SAT-based one.

Our approach slightly underperforms the planning-based
one in verifying valid plans with method preconditions but
is better in all the remaining cases.

• This might because the planning-based approach exploits
some heuristic which performs well in verifying long plans.

• Such a heuristic is less useful when the transformed
planning problem is unsolvable.

• We believe that our approach acts as a better decision
procedure compared with the planning-based one.

8.10
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Runtime

Runtime against solved instances (with method preconditions),
planning-based approach vs. ours:
Runtime is significanly lower for our apporach.

9.10



Introduction CYK Algorithm Plan Verification Experiments Conclusion

Conclusion

We developed a CYK-based TOHTN plan verification method.

Our approach outperforms the existing SAT-based and
parsing-based approaches.

Although our approach slightly underperforms the
planning-based one in verifying valid plans with method
preconditions (8 instances of ≈11.000), we believe it still
acts as a better decision procedure.
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