
Detecting AI Planning Modelling Mistakes –
Potential Errors and Benchmark Domains

Kayleigh Sleath and Pascal Bercher

School of Computing
The Australian National University
firstName.lastName@anu.edu.au

Abstract. AI planning systems can solve complex problems, leaving
domain creation as one of the largest obstacles to a large-scale application
of this technology. Domain modeling is a tedious, error-prone and manual
process. Unfortunately, domain modelling assistance software is sparse
and mostly restricted to editors with only surface-level functionality such
as syntax highlighting. We address this important gap by proposing a
list of potential domain errors which can be detected by problem parsers
and modeling tools. We test well-known planning systems and modeling
editors on models with those errors and report their results.

Keywords: Automated Planning · Modelling support · Knowledge En-
gineering · PDDL Modeling · HDDL Modeling

1 Introduction

Automated planning, a branch of artificial intelligence (AI), is concerned with
generating sequences of actions that turn one state of a system into a desired one.
This requires a formal specification of the planning model, which is written in
text files and adheres to a specific syntax such as the planning domain description
language (PDDL) [3] for classical (non-hierarchical) planning and its extension
HDDL [6] for hierarchical task network (HTN) planning [1].

Although modeling is a complex and error-prone task, the few existing mod-
eling tools focus on syntax highlighting, integrating a planner, and visualizing
solutions – but they are of limited use if the domain modeler makes mistakes.
Planning systems’ parsers provide even less support for detecting such errors; in
many cases they just crash, or even worse they don’t find solutions or find wrong
or inconsistent ones. There are a few more evolved works for modeling support
[7], but they all assume a syntactically correct model and are hence orthogonal
to our contributions.

To address this problem, we make the following contributions: (1) We provide
a compilation of potential modeling errors. (2) We supply a public repository
of 56 (flawed) benchmark domains containing each of these errors, to the best
of our knowledge the first benchmark database for AI modeling support. (3)
We conduct an evaluation of well-known AI planning tools for their ability to
diagnose those errors, showing that not a single tool is able to spot all errors,
with no tool being strictly stronger than another.

2 Kayleigh Sleath and Pascal Bercher

2 AI Planning Formalism

Due to space restrictions we do not provide a formal introduction to the descrip-
tion languages PDDL [3] and HDDL [6] or their underlying formalisms [1] and
only refer to the respective literature. Instead, we explain the input languages
based on a PDDL example taken from the PDDL textbook [3].

Listing 1.1. A PDDL action for moving a truck between locations [3].
(:action dr ive

:parameters (? t − truck ? from ? to − l o c a t i o n)
:precondition (at ? t ? from)
: e f f e c t (and (not (at ? t ? from)) (at ? to)))

Classical planning evolves around the transition of states, finite set of facts,
propositions that encode what’s currently true. States are changed by actions
(see Listing 1.1), which have preconditions (here that the truck is at the location
?from) and effects, specifying how the respective state changes (here that the
truck is not at ?from anymore but at ?to). Problems are defined in a “lifted”
fashion, where variables (parameters) are used to abstract away from concrete
constants such as specific trucks or locations. These constants/objects are given
in the problem description so that actions can be instantiated as required.

Hierarchical planning adds further constraints [1]. Here, we are additionally
given a set of compound tasks and a set of decomposition methods that specify
how these tasks could be refined into more primitive tasks and finally into ac-
tions. This process is quite similar to formal grammars, where production rules
(corresponding to decomposition methods) are used to turn non-terminal sym-
bols (compounds tasks) into terminal symbols (actions). The goal is to turn an
initially given task network – a partially ordered sequence of tasks – into an ex-
ecutable action sequence (just as in classical planning), but now tasks can only
be obtained by adhering to the hierarchy defined by the decomposition methods.

3 Potential Errors in Planning Domains

This section details a list of errors or potential errors that may be encountered
when modelling planning domains in PDDL/HDDL, separated into:

– syntax errors: these are actual errors, but often not spotted by parsers and
– semantics errors: these would be warnings as they indicate a potential mod-

eling error, to be checked by the domain modeler.

All errors we identify for classical planning (PDDL) naturally transfer to
HTN planning (HDDL) as well, whereas HTN errors are unique to HTN plan-
ning. We hence present the respective flaws in two different lists.

The list has been translated into a repository1 which we see as a first step
towards a public testbed for PDDL and HDDL parsers. We invite others to add
additional cases we might not have thought of.
1 https://github.com/ProfDrChaos/flawedPlanningModels

Potential Modelling Mistakes for AI Planning Models 3

3.1 Syntax Errors

(1) Inconsistent Parameter Use. The modeller attempts to use a predicate or
task with either a parameter of an incompatible type or a different number of
parameters than it was defined with. This second error is only possible in HTN
planning since in classical planning actions are only defined once (and thus never
referenced anymore), whereas HTN planning could re-use a task (primitive or
compound) multiple times in decomposition methods.
(2) Undefined Entities. The modeller attempts to use an undefined predicate,
type, or task. (Again “using undefined tasks” is only possible in HTN planning
for the same reason as mentioned above.)
(3) General Syntax Errors. The modeller forgets to include a key piece of syntax
or makes a typo - for instance, forgets to write “:parameters" in a task definition
(which lists the sequence of typed task parameters), adds an extra parenthesis,
forgets a dash when defining a variable, or forgets to write a questionmark in
front of a variable name to differentiate it from a constant. It is expected that
most of these errors are captured by any parser, but not all are, and useful error
messages are not always produced.
(4) Duplicated Definitions. The modeller repeats some definitions (e.g., some
task, decomposition method, predicate, or constant). Closely related, the mod-
eller writes duplicate entries in a task definition – for example, includes multiple
“:parameters” entries.
(5) Cyclic Type Declaration. When two types are directly or indirectly declared
to be subtypes of each other, forming a cycle.
(6) Undeclared Parameters. The modeller tries to use a variable in the defini-
tion of a task (or decomposition method in case of HTN planning) that wasn’t
declared as a parameter of that task (or method).
(7) Cyclic Ordering Constraints. Task networks are defined over a partial or-
dering – which excludes cycles. – HTN-specific
(8) Duplicate Orderings. A method contains both the “ordered subtasks” key-
word (which implies that only a sequence of tasks is provided), but also a (thus
redundant) set of explicit ordering constraints. – HTN-specific

3.2 Semantic Errors

These are potential errors, which do not contradict PDDL/HDDL.

(9) Complementary Effects. There is an intersection between the ground negated
and positive effects of a task.
(10) Unsatisfied Preconditions. Some action’s preconditions can never be ful-
filled. This may be due to syntactically complementary preconditions (with
identical predicates, including parameters), or simply since in the given plan-
ning problem the precondition can’t be made true. While the first possible cause
is a simple syntax check the second involves complex reasoning, which is as hard
as planning.

4 Kayleigh Sleath and Pascal Bercher

(11) Unused Elements. The modeller defines a type or predicate or a parameter
in a task (or decomposition method in case of HTN planning) that is not used.
In the case of HTN planning, tasks may be “unused”, which can be defined as
being unreachable from the initial task network.
(12) Redundant Effects. Some effect will never change the state to which the
respective action is applied. There are two possibilities how this can happen:
The simplest case is if some effect also occurs as a precondition (with identical
parameters). The redundancy can however also be problem-dependent, i.e., if
any grounding of some effect is contained in any state in which the respective
action is applicable.
(13) Immutable Predicate. A predicate is defined which never occurs in task
effects. This means the state of that predicate is constant.
(14) Compound Tasks Without a Primitive Refinement. The modeller defines a
compound task which can never be refined into a primitive plan (it is therefore
useless). A special case of this is not providing any decomposition method for
some compound task. – HTN-specific

4 Evaluation of Existing Parsers

From the proposed list, we created a large benchmark set with flawed domains.
We tested some of the best-known AI planning tools (planning system parsers
or domain editors) that parse PDDL and HDDL domains and evaluated their
performance. These tools were: editor.planning.domains [9], Visual Studio PDDL
Plugin [2], Fast Downward [4], PANDA [5], HyperTensioN [8], and LiloTane [10].

4.1 Results

The software was evaluated for each flawed domain based on three categories:
Error Detection. Whether the software recognises the error and stops the

parsing process (‘yes’ – green), crashes without catching the error (‘crashes’
– yellow), or provides a solution/reports unsolvable despite the model being
wrong (‘no’ – red).

Location Guidance. Whether the software pinpoints the correct line number
of the error (‘yes’ – green), points toward the correct area of code, usually
by naming the task which contains the error (‘close’ – yellow), or provides
an inaccurate or no indication of the location of the error (‘no’ – red).

Error Description. Whether the software provides a clear and helpful descrip-
tion of the error (‘yes’ – green), a correct description which is unclear or
confusing (‘close’ – yellow), or no or incorrect error description (‘no’ – red).

The results are reported in Fig. 1 for the individual domains, and in Fig. 2
with an overview. We also provide all data collected (including the actual output
messages of the tested software) in a Zenodo repository [11]. We can report that
none of the software tested addressed any of our potential semantics errors, with
the exception of the VSCode plugin diagnosing the unused predicate error.

Potential Modelling Mistakes for AI Planning Models 5

P
D

V
S

F
D

PA
N

LT
H

T
123

123
123

12
3

123
123

1
inc-num

-par-pred
1

inc-type-par-pred
1

inc-num
-par-task

1
inc-type-par-task

2
undef-type

2
undef-predicate

2
undef-task

3
extra-parentheses

3
forgotten-dash

3
forgotten-q-m

ark
3

forgotten-entries
4

duplicate-action
4

duplicate-predicate
4

duplicate-param
eters

4
duplicate-com

p-task
4

duplicate-dec-m
5

dir-cyc-subtypes
5

ind-cyc-subtypes
6

undecl-task-par
6

undecl-m
ethod-par

7
cyc-ord-subtasks

8
duplicate-orderings

9
com

pl-effects
9

poss-com
pl-effects

10
com

pl-preconditions
11

unused-type
11

unused-pred
11

unused-param
eter

12
red-pre-and-eff

12
im

plied-task-effects
13

im
m

-predicate
14

com
p-task-w

out-ref
14

com
p-task-w

out-m

Fig. 1. Results of each software: Planning.Domains (PD), VSCode plugin (VS), Fast
Downward (FD), (PAN)DA, Lilotane (LT), Hypertension (HT). We tested error de-
tection (1), line pinpointing (2), and error message quality (3). We first list syntax
errors, then (potential) semantic errors. For VS, the lighter shade of green corresponds
to errors caught by PD, which the plugin uses as default planner.

Fig. 2. The overall success rates of the evaluated software. The location guidance and
error description rates are percentages of the number of errors caught by the parser, not
the total number of errors tested (e.g. if a parser catches 6 of 10 errors, and provides
a helpful error message for 3 of them, its success rate for Error Description would be
50%). For hierarchical planners, performance on only the domains which were tested on
both classical and hierarchical planning systems is included (called ‘excluding HDDL-
specific’) to allow for fair comparison between the two kinds.

6 Kayleigh Sleath and Pascal Bercher

5 Conclusion

We provided a comprehensive list of potential domain modelling errors for classi-
cal and hierarchical AI planning. It is accompanied by example domains contain-
ing each of these errors, proposed to form the foundation of a set of standardized
tests for domain modelling assistance software and improving existing and future
PDDL and HDDL parsers.

In our empirical evaluation, we show that a selection of successful well-known
– and thus often used – AI planning systems and modeling tools for both PDDL
and HDDL domains fail to recognize many of these errors. We thus hope that
our list and benchmark set will act as a valuable contribution towards improving
these and future software. We furthermore hope that other domain modelers see
the benefit in our list and these test cases and thus provide additional bench-
marks themselves.

Acknowledgements

We would like to thank Bernd Schattenberg for discussions (and one of the
reported errors).

References
1. Bercher, P., Alford, R., Höller, D.: A survey on hierarchical planning - one abstract

idea, many concrete realizations. In: Proc. of the 28th Int. Joint Conference on AI
(IJCAI). pp. 6267–6275. IJCAI (2019)

2. Dolejsi, J.: PDDL visualstudio plugin (2017),
https://marketplace.visualstudio.com/items? itemName=jan-dolejsi.pddl

3. Haslum, P., Lipovetzky, N., Magazzeni, D., Muise, C.: An Introduction to the
Planning Domain Definition Language. Morgan & Claypool (2019)

4. Helmert, M.: The fast downward planning system. Journal of Artificial Intelligence
Research (JAIR) 26, 191–246 (2006)

5. Höller, D., Behnke, G., Bercher, P., Biundo, S.: The PANDA framework for hier-
archical planning. Künstliche Intelligenz 35(3), 391–396 (2021)

6. Höller, D., Behnke, G., Bercher, P., Biundo, S., Fiorino, H., Pellier, D., Alford, R.:
HDDL: An extension to PDDL for expressing hierarchical planning problems. In:
Proc. of the 34th AAAI Conf. on AI (AAAI). pp. 9883–9891. AAAI Press (2020)

7. Lin, S., Grastien, A., Bercher, P.: Towards automated modeling assistance: An
efficient approach for repairing flawed planning domains. In: Proc. of the 37th
AAAI Conference on AI (AAAI). pp. 12022–12031. AAAI Press (2023)

8. Magnaguagno, M.C., Meneguzzi, F., Silva, L.d.: HyperTensioN: A three-stage com-
piler for planning. In: Proc. of the 10th International Planning Competition: Plan-
ner and Domain Abstracts – Hierarchical Task Network (HTN) Planning Track
(IPC 2020). pp. 5–8 (2021)

9. Muise, C.: Planning.Domains. In: ICAPS – Demo 2016 (2016)
10. Schreiber, D.: Lilotane: A lifted SAT-based approachto hierarchical planning. Jour-

nal of Artificial Intelligence Research (JAIR) (70), 1117–1181 (2021)
11. Sleath, K., Bercher, P.: Experimental results for the PRICAI 2023 paper “Detecting

AI planning modelling mistakes – potential errors and benchmark domains” (2023).
https://doi.org/10.5281/zenodo.8249690

