
Intractability of Optimal Multi-Agent Pathfinding
on Directed Graphs
Xing Tan a;* and Pascal Bercher b;**

aDepartment of Computer Science, Lakehead University, Canada
bSchool of Computing, The Australian National University

Abstract. In Multi-Agent Pathfinding (MAPF) problems, multi-
ple agents move simultaneously to reach their individual destina-
tions without colliding with each other. The computational complex-
ity of the problem has been extensively studied for undirected graphs
over the past decades. However, plan existence for Directed MAPF
(diMAPF) was only recently studied and was shown to be in PSPACE
as well as NP-hard. In this paper, we study the optimization versions
(on makespan and on travel distance of agents) of diMAPF problems
and show that they remain NP-hard even when various important
non-trivial restrictions are imposed (e.g., when considering the prob-
lem on directed, acyclic, and planar graphs where the vertex-degrees
are bounded). We have also provide membership results, thus pre-
senting the first set of NP-completeness results for various optimal
diMAPF variants.

1 Introduction
In a multi-agent pathfinding (MAPF) problem, multiple autonomous
agents (e.g., robots in a warehouse) move simultaneously, search-
ing and planning for paths to their respective destinations without
colliding with each other [19, 16]. The problem is receiving in-
creasing attention in both research and application in recent years
[13, 11]. Relevance of MAPF can be found in several important
problems/applications in the areas of robotics (e.g., in the coordi-
nation of autonomous drones or mobile robots in a factory), Opera-
tions Research (e.g., for optimizing transportation of goods and per-
sonnel in logistics and supply chain management), and AI planning
[12, 2, 18, 15, 6, 14].

The problem of determining whether a multi-agent pathfinding
(MAPF) problem has a solution can be solved efficiently in poly-
nomial time for undirected graphs [7]. However, the optimization
versions of the MAPF problem, including finding optimal solutions
for makespan or travel distance of the agents, are NP-complete on
general graphs and in various constrained settings, such as planar
graphs or grids [17, 21, 20, 1, 5]. The case of MAPF on directed
graphs (diMAPF) has only recently been studied and was proven to
be NP-hard and in PSPACE [9]. However for restricted cases, such
as directed acyclic graphs or strongly connected graphs, diMAPF be-
comes NP-complete [9, 10].

In this paper, we aim to go beyond the results of [9, 10] by examin-
ing the complexity of the optimization version of restricted diMAPF
problems. Specifically, we focus on optimizing the makespan, where

∗ Email: xing.tan@lakeheadu.ca
∗∗ Email: pascal.bercher@anu.edu.au

multiple agents move in time steps. Our study sheds light on this
problem and provides insights into other optimization criteria, such
as minimizing the maximal travel distance for any agent or minimiz-
ing the total travel distance for all agents. As shown in the paper,
computational complexity of these optimal diMAPF problem, can be
obtained based on our findings related to makespan.

Along this line of research we show that eventually, even if the un-
derlying diMAPF problem is known to be solvable and the makespan
is instantiated into its extreme value, it remains NP-hard to check
the solvability of the corresponding optimization version for a given
makespan. This complexity property is thus independent of the (NP-
hard) reasoning about solvability of diMAPF, but is caused by the
introduction of a makespan-bound to the problem. With a bounded
makespan, diMAPF can be constrained on simple paths only for
agents. Consequently, we are able to show NP-membership on top
of its hardness, leading to the first set of NP-completeness results for
optimal (i.e., makespan-bounded) diMAPF. These complexity results
can be extended naturally to diMAPF bounded by maximal or overall
travel distance as well.

To identify further sources of hardness, a variety of different re-
strictions to diMAPF aside from makespan, are considered. In fact,
being able to extend the NP-completeness property from diMAPF on
directed acyclic graphs [9] to problems where the graphs are in addi-
tion planar, marks an interesting breakthrough: Several other results
follow almost immediately. For example, we are able to show readily
NP-hardness of a highly restricted variant, the problem whose graph
is not only planar, but also with vertex-degree bounded by three for
all vertices. This result has a valuable implication on our future prac-
tice of algorithm design and development for real-world applications:
We are now informed that under this practical scenario where agents
are all in 2D space, on one-way roads with at most T-type junctions
only, it is unrealistic to expect a poly-time algorithm for optimal so-
lutions.

The remainder of this paper is organized as follows. Background
knowledge including key concepts related to MAPF are defined in
Section 2. Our complexity analysis is presented subsequently in Sec-
tions 3 and 4. Section 5 summarizes the obtained complexity results
and concludes the paper.

2 Background

In this section, we formally define MAPF and diMAPF problems
as well as the syntactic restrictions that we pose on them. We will
provide additional definitions for restricting the makespan in later

sections once we start to investigate optimal (i.e., bounded) diMAPF
problems.

Definitions follow the ones by Nebel in [9, 10]. Let A be a finite
set of agents, and G = ⟨V,E⟩ a directed graph, where V is a finite
set of vertices and E ⊆ V × V is a finite set of directed edges. An
agent in A can move from vi ∈ V to vj ∈ V if (vi, vj) ∈ E is
an edge in the directed graph G (more constraints will be provided
later). A state S defines a distribution of all agents from A, in vertices
from V . Formally, given A and G = ⟨V,E⟩ such that |A| ≤ |V |,
the state S is defined to be an injective function f : A → V , so there
cannot be any vertex collision (i.e., no vertex contains more than one
agent).

Time is measured in steps. A step σ defines a step-wise movement
of all agents, which changes a state S into its successor Ssucc. It is
required that the movement of all agents in σ, between S and Ssucc,
should be applicable ones, and the applicability of agent movements
is defined by the principles of precondition and frame axioms in clas-
sical AI planning. That is, vertex vj in Ssucc contains an agent A if
and only if:
1. Agent A is in vj in S and remains there (and no other agent moves

onto vj); Or
2. Agent A is in some other vertex vi in S, and between these two

successive states, A moves along (vi, vj) in V of G (no other
agent moves onto vj as well, and no other agent was on vj in S,
unless it moves away from there).

Thus, movement onto vj is allowed even if it was occupied before
the move, as long as the respective agent moves away.

Let S0 ≡ I be the initial state, and Sn ≡ G the final state
where all the agents are injectively mapped into their respective
goal-vertices. Let S0 be a state and Σ ≡ σ1, . . . , σn a sequence
of |Σ| = n steps. Then, Σ applied to S0 is represented by S⃗ ≡
(S0, S1, . . . , Sn−1, Sn). That is, for all 1 ≤ i ≤ n step σi is
applied to Si−1, resulting in a successor state Si. Given S⃗, path pi
denotes the stepwise movement of agent Ai between states in S⃗, ini-
tially from S0 ≡ I and eventually to Sn ≡ G (i.e., |pi| is the travel
distance of Ai)1. Set PΣ contains all paths for all agents with a given
Σ applied to S0, while path lengths are the travel distances for these
agents. Thus pi, the path of Agent Ai, is a member of PΣ. For the
sake of brevity, from this point forward, we shall adopt the simplified
notation P to represent PΣ, as long as it does not lead to any confu-
sion or ambiguity. Note that the lengths of all paths in P might vary,
but are upper-bounded by n, the total number of steps between states
from I to G. That is, an agent may not actually move between two
successive states (e.g., in the example of Figure 1, the green agent
Ag does not move between S0 and S1).

Definition 1 (MAPF) A Multi-Agent Path Finding problem is a
four-tuple ⟨G,A, I,G⟩, where G is an undirected graph, A is a set
of agents, I is the initial situation, and G is the goal situation. Is
there a sequence S⃗ that moves agents in A from I to G?

Definition 2 (diMAPFR) A directed MAPF problem on a (possibly
empty2) set of restrictions R is a MAPF problem ⟨G,A, I,G⟩, where
G is a directed graph that underlies the restrictions in R. We con-
sider the following restrictions:

1 Regarding the behavior of an agent after arriving at its goal vertex, in some
literature (e.g., [16]) an agent will stay and will never move again – thus
preventing any other agent from passing through it in future steps. We ac-
cept that any agent has the option to move out of its way, even if it is already
on its goal vertex. To be explained next in our definitions, however, this is-
sue is no longer relevant if the graph is a directed acyclic graph (DAG).

2 If R is empty, we do not provide any superscript.

a

b

c

d

e

I/S0

a

b

c

d

e

S1

a

b

c

d

e

S2

a

b

c

d

e

G/S3

Figure 1: A diMAPF example. Initially at I ≡ S0, the green agent
Ag is at vertex a, and the blue agent Ab is at b. The goal for Ag is c,
for Ab is d. In between I and G, Ag waits at vertex a for Ab to pass
vertex e first.

d ≤ 3 G is a DB3-digraph. Let “dgr(i, j)” denote a vertex in a
digraph having in-degree i and out-degree j. A degree-bounded-
by-3 (DB3)-digraph is a digraph such that for any vertex v in the
graph, if dgr(i, j) holds for v, then i+ j ≤ 3.
dag G is acyclic, i.e., a DAG3.
pl G is planar. That is, it can be drawn on the plane in a way such
that none of its edges intersect with each other.
sc G is strongly connected. A directed graph is strongly connected
if every pair of vertices u and v should have a path in each direc-
tion between them.
uc G is unilaterally connected. That is, every pair of vertices u
and v in G should have a path in at least one direction between
them.
wc G is weakly connected. A directed graph is weakly connected
if there is a path between every pair of vertices u and v in the
underlying undirected graph.

Note that, in terms of connectedness of a directed graph, from “sc”,
to “uc”, to “wc”, it is getting weaker. That is, a strongly connected
graph is unilaterally connected, and a unilaterally connected graph
must also be weakly connected. However such implications do not
hold in the reversed direction.

Major results in [9, 10] are presented below, as we will discuss
how they are related to our novel results.

Theorem 1 [Theorem 1, Propositions 2 and 3, and Theorem 4 in
[9], Theorem 18 and 19 in [10]] The problem diMAPF is
1. NP-hard, and in PSPACE;
2. NP-complete, if G is a directed acyclic graph (dag);
3. NP-complete, if G is a strongly connected digraph (sc)4.

3 On the Intractability of Severely Restricted
Acyclic diMAPF Problems

Nebel [9] showed that unrestricted diMAPF problems are in
PSPACE as well as NP-hard. He was furthermore able to show NP-
completeness for a severely restricted case, namely for diMAPF
problems on acyclic graphs. We refine this result by posing even fur-
ther restrictions on the graph. Specifically we show that the problem
remains NP-hard even if the underlying graph is planar.

We regard this a highly relevant result because real-world diMAPF
problems often result from an actual environment that is being mod-
eled, e.g., 2D landscapes, which are inherently planar. To prove NP-
hardness on planar graphs, we use a highly restricted SAT problem.
3 When a graph is a DAG, the question of whether an agent should be allowed

to further move after its goal vertex, is no longer relevant, due to this DAG
acyclicity property.

4 This NP-completeness result is recently obtained in [10], through the proved
validity of the Short Solution Hypothesis for strongly connected digraphs.
That is, if an instance diMAPF in a given strongly connected digraph is
solvable, a polynomial length solution exists for the instance.

x1 x2 x3 x4

c1 = x1 ∨ x3 ∨ x4

c2 = ¬x2 ∨ ¬x3 ∨ ¬x4

c3 = ¬x1 ∨ ¬x2 ∨ ¬x4

Figure 2: An example RPMS-3SAT instance.

A Boolean formula is a sentence of operations (conjunction, dis-
junction, or negation) of a set of n Boolean variables. The formula is
in 3CNF if it is in the form of a conjunction of k clauses, and each
clause is a disjunction of exactly three literals (a literal is a variable,
or a negation of a variable). The problem 3SAT asks if a given 3CNF
instance is satisfiable.

A 3CNF instance is planar if its corresponding bipartite incidence
graph between variables and clauses is planar. In other words, there
is an edge between variable x and clause c in the graph iff l, which
is a literal corresponding to x, appears in c in the original formula. A
3CNF is rectilinearly-planar if its corresponding bipartite incidence
graph is not only planar, but also possible to be embedded in a way
where 1) all its variables can be arranged to form a straight line (e.g.,
from left to right with variables x1 up to xn), and 2) all its clauses are
arranged into a rectilinear configuration. That is, each clause contains
three “legs” and each leg connects the clause and one of the three
variables corresponding to the three literals in the clause. Clauses
are nested such that none of their legs will cross each other (thus
the property of planarity is maintained). A 3CNF is monotone if its
clauses are either all positive, or all negative.

Definition 3 A Rectilinear-Planar Monotone Sided 3SAT (RPMS-
3SAT) instance is a Boolean formula in the 3SAT format,
rectilinearly-planar, and monotone. In addition, the clauses are
sided: All positive/negative clauses are on the side above/below the
variable line, respectively.

Figure 2 is an example RPMS-3SAT instance, where the clause
nodes are in grey color, and variable nodes are the white ones. The
formula is

(x1 ∨ x3 ∨ x4) ∧ (¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (¬x1 ∨ ¬x2 ∨ ¬x4)

The following theorem states the intractability of RPMS-3SAT, a
property which is used to construct the NP-hardness part of the proof
for Theorem 2.

Proposition 1 (Theorem 1 from [4]) Rectilinearly-Planar Mono-
tone Sided 3SAT (RPMS-3SAT) is NP-complete.

It is stated in Proposition 2 by Nebel [9], that diMAPFdag is NP-
complete. We have the following result, which enforces in addition
the planarity on DAGs in diMAPF. As will be demonstrated later,
several theorems on optimal diMAPF problems can be derived al-
most immediately from this novel result.

Theorem 2 diMAPFdag,pl is NP-complete.

Proof Membership: diMAPFdag,pl is in NP, as it is a special case to
the NP-complete diMAPFdag problem.

Hardness: We perform a polynomial time transformation from
RPMS-3SAT into the current problem. Given a RPMS-3SAT instance

vl vr

vt

vb

(a)

vl vr

vt

vb

vb0

vb1

(b)

Figure 3: (a) A diamond component, constructed from a variable in
the original RPMS-3SAT instance. For each variable in RPMS-3SAT,
one and only one diamond component is generated. All these dia-
monds are to be connected into a chain (as shown in Figure 4). (b)
A diamond variant to the one in (a). Two vertices (vb0 and vb1) are
added below vb, and the variant now satisfies “d ≤ 3”, a constraint
that is studied in Theorem 11.

consisting of n variables and k clauses, we create a corresponding
diMAPFdag,pl instance ⟨G(dag,pl),A, I,G⟩.

Each variable in RPMS-3SAT is converted into a “diamond” com-
ponent (Figure 3.(a)) consisting of four vertices, the left, right, top,
and bottom ones vl, vr , vt and vb, respectively. All edges are di-
rected. Aside from the four edges connecting these four vertices (di-
rections as indicated in Figure 3.(a)), there is exactly one edge enter-
ing the diamond into vl and exactly one edge leaving the diamond
from vr . However there might be zero or multiple edges entering the
diamond either from the top vertex vt, or from the bottom one vb
(e.g., in Figure 3.(a), one edge enters from the top, and three edges
enters from the bottom). There is a variable agent (called v-agent,
in the color violet) initially based at vl, having vr as its goal vertex
(highlighted in violet too).

All the diamonds are left-right connected into a chain (as illus-
trated in Figure 4). For each clause in RPMS-3SAT, we create a cor-
responding clause vertex, with three directed edges leaving it (cor-
responding to the three legs of the original clause). If the clause is
positive, it will be on top of the diamond chain, otherwise it would
be below the chain. According to the content of a given clause, the
three leg-edges of the clause will enter their corresponding diamonds,
respectively. For each clause vertex, there is a clause agent (called c-
agent, in the color of cyan) initially in it.

Additionally there is a vertex (called B) entering the left-most ver-
tex in the diamond chain. Initially there is an agent (called B-agent,
highlighted in blue color, which will traverse the chain of diamonds,
reflecting an assignment of Boolean values to all the variables in the
original problem). There is also a linked chain of vertices connected
to the right-most vertex in the diamond chain. These vertices are re-
spectively the goal vertices for the c-agents, and at the end of the
linked chain is Bg , the goal vertex for the B-agent.

The construction is complete, an example resulting diMAPFdag,pl

instance ⟨G(dag,pl),A, I,G⟩ is shown in Figure 4 (converted from
Figure 2). Since the graph associated with the original RPMS-3SAT
instance is planar, the resulting graph G(dag,pl) is planar too.

We have thus the following observations:
1. In order to arrive at its goal vertex, a c-agent has to traverse first

at least one diamond component.
2. For any diamond component, it is never the case that a c-agent

leaves it before the B-agent. Reason: If it happens, this c-agent

v1l v1r

v1t

v1b

v2l v2r

v2t

v2b

v3l v3r

v3t

v3b

v4l v4r

v4t

v4b

c1

c2

c3

B cg3

cg2

cg1

Bg

Figure 4: The resulting diMAPFdag,pl instance ⟨G(dag,pl),A, I,G⟩,
converted from the RPMS-3SAT instance in Figure 2. Note in partic-
ular the graph G(dag,pl) is a DAG, and is planar.

will always be before the B-agent, and the problem can not be
solved (regardless the problem is actually solvable or not).

3. To arrive at its goal vertex, the B-agent will have to traverse all the
diamond components in a sequence. At each step, when it enters
a diamond it will force the v-agent in the diamond to move.

4. There are exactly two alternative ways (through either the top ver-
tex vt, or the bottom vertex vb) for a v-agent to arrive at its goal
vertex vr . On its way, the v-agent has to wait, to yield its way for
the B-agent (and possibly c-agents too) to pass through the dia-
mond component.

5. All along the path, the B-agent is left with no choice in terms of
which vertex to explore. Its path is determined by all the v-agents.
And when the B-agent is traversing a diamond, no c-clause will
interfere. If a c-clause arrives at a diamond before (or even at one
same step with) the B-agent, the c-agent will eventually block the
B-agent from arriving its goal vertex Bg , which is located at the
very end of the graph.
We are ready to prove a RPMS-3SAT instance is satisfiable iff the

resulting diMAPFdag,pl instance ⟨G(dag,pl),A, I,G⟩ admits a solu-
tion.

(⇒) : The satisfying truth-value assignment of variables in RPMS-
3SAT corresponds to the path traversed by the B-agent through the
diamonds (called the “blue-path”): If a variable v is assigned to be
true/false, then the blue-path traverses vt/vb, respectively. Since all
clauses are satisfied under this assignment, at least one leg of any
clause enters this blue-path, thus the clause itself is able to arrive at
its goal vertex. The B-agent leads, followed by the c-agents, which
are lined up in exactly the order of c1 . . . ck, so all of them will be
able to arrive at their goal vertices.

(⇐) : If the resulting diMAPFdag,pl admits a solution, the solu-
tion consists of a blue-path, and that blue-path corresponds to an sat-
isfying truth-value assignment to the variables in the original RPMS-
3SAT instance. Whichever diamond a c-agent chooses to go, it cor-
responds to the variable/litereal (assigned to be true) in the origi-
nal clause. Thus the clause must also be true under this assignment.
Hence the original RPMS-3SAT must be satisfiable. □

Corollary 3 diMAPFdag,pl,d≤3 is NP-complete.

Proof Membership: diMAPFdag,pl,d≤3 is a special case of the NP-
complete diMAPFdag,pl problem, so membership follows directly.

Hardness: We can continue on the poly-time transformation per-
formed in proving Theorem 2. Observe in particular that in the result-

ing graph (e.g., Figure 4), the degree constraint d ≤ 3 can possibly
be violated only on those bottom/top vertices in the diamond com-
ponents of the constructed graph. We can add up to k intermediated
vertices before these bottom/top vertices such that the “leg” edges
will enter these vertices first, instead of entering directly these bot-
tom/top vertices. As a result, the d ≤ 3 constraint is satisfied, and the
planarity property remains to be valid.

One such example is Figure 3. In Figure 3.(a), the d ≤ 3 constraint
is violated at (and only at) the vertex vb. However in Figure 3.(b),
two vertices (vb0 and vb1) are added below vb, and the three edges
initially enters vb are now redirected accordingly, as illustrated in
Figure 3.(b). □

Theorem 4 diMAPFdag,uc is NP-complete.

Proof Membership: diMAPFdag,uc is a special case of the NP-
complete diMAPFdag problem, so membership follows directly.

Hardness: We reduce from diMAPFdag and create a unilaterally
connected graph without having any side effects on solvability (or
solution length).

We pair-wise check any two vertices, say u and v in G′, to see
whether u is reachable from v or vice versa (both can not be as this
would contradict acyclicity). If one is reachable from the other, this
pair is unilaterally connected already and there is nothing to do. If
not, we introduce a new dummy vertex d and insert it via edges be-
tween u and v resulting into the path u → d → v. Doing so will not
introduce a cycle as previously there does not exist a path between u
and v. The resulting graph G′′ remains a DAG but u and v are now
unilaterally connected.

To ensure that solutions do not change, the new edges cannot be
usable. For this, we simply introduce a new dummy agent ad, place it
initially on d and also define d as its goal. Since the graph is acyclic
we know that if ad moves, the agent will not be able to return, thus
implying unsolvability. We do this for all pairs of vertices thus intro-
ducing at most O(|V ′|2) = O(|V | · |A|)2 new vertices, edges, and
agents. □

4 On the Computational Complexity of Optimal
diMAPF Problems (OdP)

In this section, we investigate the computational complexity of the
optimization variant of diMAPF problems. Since we study decision
problems, we model (as usual in complexity studies) the optimiza-
tion criterion using an additional input, namely the makespan that is
supposed to be optimized. Below, we first provide the additionally
required definitions for this optimization criterion. Then, we present
our results in three further sections. First, in Section 4.1, we present
our results for the problem, where we pose restrictions on the graph
only but no restrictions on the makespan. Then, in Section 4.2, we
analyze how these results can be refined by further putting restric-
tions on the makespan. Finally, restrictions on the length of paths are
studied in Section 4.3.

In terms of optimal diMAPF problems, we investigate various re-
stricted variants of diMAPF, with three different optimization criteria
considered.

Definition 4 (diMAPFR
⟨O,B⟩) diMAPFR

⟨O,B⟩ is a diMAPF problem
subject to restrictions R and an optimization criterion of type O,
which is bounded by B ∈ Z+.

To decide diMAPFR
⟨O,B⟩ with O ∈ {ms,max, tot} means to an-

swer: Is there a S⃗, such that

• If O = ms, then: |Σ| ≤ B?
• If O = max, then: max

p∈P

(
|p| ≤ B

)
?

• If O = tot, then:
(∑

p∈P |p|
)
≤ B?

The set R now may also include the restriction sol (solution
provided), which means that the problem has an additional input,
namely a solution to the given unbounded problem, i.e., it may not
satisfy the given optimization criterion.

Note that in Figure 1, |Σ| = 3 thus from the definition ms the
makespan is 3. Each one of the two agents traverses two edges, thus
max the maximal individual distance is 2.

∑
p∈P |p| = 2 + 2 = 4,

i.e., tot the total distance with two agents is 4.
Below we discuss briefly the relationships among these three op-

timization criteria in the general sense:

• max ≤ ms. An agent might pause between two consecutive steps,
and even if it non-stop moves for all steps, the best that can be
achieved is max = ms.

• max ≤ tot, which is obvious.
• For ms and tot, either one can be greater: Intuitively, in a sce-

nario of tot ≤ ms, a system might freeze itself between some
steps leading to an arbitrary-long makespan, while the actual dis-
tance all agents travelled is relatively small. Alternatively, when in
some another system where all the agents are routed effectively, it
however can be the case ms ≤ tot. A simple example is already
included in Figure 1, where ms = 3 and tot = 4.

4.1 OdP with Graph Restrictions

We start with our results that (almost) directly follow from recent
work by [9].

Corollary 5 diMAPF⟨ms,B⟩ is NP-hard.

Proof The proof is straightforward, given that we already know the
problem diMAPF is NP-hard [9]. If diMAPF admits a solution, we
can safely assume the solution does not repeat any state, otherwise
we can simply remove all the states between any two repeated ones.
Hence diMAPF is feasible iff it admits a sequence with length at most
exponentially long, i.e., it has an upper bound of |V ||A|. We can use
this bound as value of B, which is polynomial in space by encoding
this exponential number logarithmically. □

In addition to NP-hardness and PSPACE membership of the gen-
eral case, Nebel [9] also provides an NP-completeness proof, namely
for acyclic graphs. This result can be directly transferred to our
bounded case as well:

Corollary 6 diMAPFdag,uc
⟨ms,B⟩ is NP-complete.

Proof Membership: Due to acyclicity all paths for all agents can be
limited by a polynomial, or more precisely by |V |. This means that
the maximal makespan is bounded by |V |·|A|, still a polynomial. We
still need to check whether this guessed plan is also executable, but
this can be done in linear time. This suffices to show that the problem
is thus in NP.

Hardness: We reduce the NP-complete diMAPFdag,uc (Theorem
4) to diMAPFdag,uc

⟨ms,B⟩ by using the exact same reduction as for Corol-
lary 5. This time we do not even need the logarithmic encoding since
we know that plans for diMAPFdag,uc problems are bounded by the
polynomial |V | · |A|, so we use B = |V | · |A| thus completing the
construction as clearly diMAPFdag,uc admits a solution of bound B
if and only if diMAPFdag,uc has any solution at all. □

Results obtained up to here followed relatively directly from the
literature. We move on in the subsequent two sections posing addi-
tional structural restrictions on the problem for which we can still
maintain NP-completeness.

4.2 OdP with Makespan Restrictions

We are interested in exploring the extent to which the makespan, de-
noted as B, can be constrained while the problem remains NP-hard.
To initiate this investigation, we begin by imposing a polynomial re-
striction on the number of nodes in the graph associated with the
problem.

Now, let us consider an additional scenario in which the graph
involved in the given problem is both acyclic and unilaterally-
connected. Under these conditions, the problem, formally denoted as
diMAPFdag,uc

⟨ms,|V|⟩, can be shown to be NP-complete. That is, we now

have a special case of the previous diMAPFdag,uc
⟨ms,B⟩ , so membership

follows directly. Meanwhile, to prove the hardness part, we can re-
duce from diMAPFdag,uc

⟨ms,B⟩ . Specifically, we only need to make sure
that it remains solvable within a makespan that equals the number
of nodes of the original problem. Now, if the bound B happens to be
equal to or smaller than the number of nodes in the input problem,
nothing has to be done. If it is however larger (with a possible maxi-
mum of |V | · |A|), we increase the number of nodes to this number,
but in a way that the graph remains unilaterally connected, and that
the additional vertices cannot be used – in the same way as in the
previous proof for Theorem 4. As we only need polynomially many
new vertices and agents, the transformation runs in poly-time.

Also note that, from Theorem 1 of [9], our Corollary 5, Corol-
lary 6, and Theorem 2, it is also straightforward to obtain the NP-
completeness result for the problem of diMAPFdag,pl

⟨ms,|V|⟩, where the
graph is acyclic and planar.

We now move on to further restricting the bound B. More specif-
ically, we are interested in finding a lower bound (lb) for the actual
value of B, such that when “B < lb” holds, diMAPFR

⟨O,B⟩ can not
admit any solution anyway, as B is too small. The lower bound for
ms is first investigated.

Definition 5 Given a diMAPFR
⟨ms,lbms⟩ problem, lbms is a tight lower

bound makespan, in the sense that, there does not exist a S⃗, which
is a solution to diMAPFR, and |Σ| < lbms. In other words, for any
integer n > 0, the problem diMAPFR

⟨ms,(lbms−n)⟩ does not admit a
solution.

Definition 6 (LBms of diMAPFR) Given a diMAPFR problem, a
set Pmin containing the shortest paths from their initial vertices to
their goal vertices, for all the agents in the problem, and suppose
p̂ ∈ Pmin is a path whose length is the maximal one among all
paths in the set, we define that LBms = |p̂|.

Proposition 2 Given a diMAPFR,
• Pmin, thus LBms, can be calculated in poly-time; And
• given diMAPFR

⟨ms,LBms⟩, LBms is actually an instance of lbms.

Proof The set Pmin can be constructed through running Dijkstra’s
algorithm on the graph G in diMAPFR, for each agent in the prob-
lem, to find out the shortest path for the agent to move from its initial
vertex to the goal one.

From Pmin, we obtain LBms. Even if it is possible for all agents
non-stop moving between steps, it still takes at least as many as
LBms steps to arrive at all their respective goal vertices. Hence the
makespan value can not be smaller than LBms. In other words, LBms

is a tight lowerbound for makespan. □

The following theorem however indicates that even if we are deal-
ing with this boundary case on the B value, the problem becomes
NP-hard.

Theorem 7 diMAPFdag,pl
⟨ms,LBms⟩ is NP-complete.

Proof The problem as a further restricted version to an NP-complete
problem, remains in NP.

In order to prove the NP-hardness of the problem, we can use the
same construction in the proof for Theorem 2. Note that in the con-
structed graph the longest path among all agents is the one for the
B-agent. Suppose originally there are n variables and k clauses, then
the length of this longest path is 3n+k+1. In Figure 4, for example,
the length is thus 3 · 4 + 3 + 1 = 16.

It is clear that a RPMS-3SAT instance is satisfiable iff the result-
ing diMAPFdag,pl

⟨ms,LBms⟩ instance ⟨G(dag,pl),A, I,G⟩ admits a solution
within 3n+ k + 1 steps. □

The intractability result can be extended into the case where we
know of the existence of “sol”, which is a solution not subject to the
makespan constraint. In other words, “sol” is provided as additional
input.

Corollary 8 diMAPFdag,pl
⟨ms,LBms⟩,sol is NP-complete.

Proof The problem is again in NP, as it is a special case to the NP-
complete diMAPFdag,pl

⟨ms,LBms⟩ (proved in the theorem above).
To prove it is NP-hard, again we start up from the construction in

the proof for Theorem 2. We will introduce into the graph bridge-
paths, which are too long in length thus can not be used when the
makespan constraint is applied. Precisely, each bridge-path will con-
nect two existing vertices, with more than 3n + k + 1 vertices in
between. One bridge-path connects from B to Bg . Within each dia-
mond, there is also a bridge-path connecting the left vertex with the
right one. Hence we know that without the makespan constraint, the
B-agent can simply take its bridge-path to arrive at its goal. At the
same time, all v-agents will use their corresponding bridge-paths to
their goals too. Hence all c-agents will never be blocked by any v-
agents. As long as they follow the right order from c1 to ck, they can
always arrive at their goal vertices. This arrangement corresponds to
a solution for the problem, which is not subject to the “LBms” con-
straint. However, it is still NP-hard to decide the existence of a so-
lution that is bounded by 3n + k + 1, equaling to the length of the
shorted path for the B-agent. □

4.3 OdP with Restrictions on Path Length

The availability of Theorem 2 to Corollary 8 allows us to perform
complexity analysis on optimal diMAPF problems on the optimiza-
tion criteria related to travel distance of agents, relatively easily. The
definitions are given below first.

Definition 7 We first identify respectively in the following two lower
bounds for maximal individual travel distance, and for total distance.

• (lower bound of maximal distance, written as “lbmax”) We can
again in polynomial-time find out Pmin the shortest paths for all
the agents in a given problem instance. Among them, we pick up
p̂ the longest one, whose length |p̂| = LBmax, which serves as the
lower bound for B (justification is similar to the one for lbms/LBms).

• (lower bound of total distance, written as “lbtot”) We see that the
actual lbtot should be instantiated into LBtot =

∑
p∈Pmin

|p|. Any
path p ∈ Pmin is the shortest one for its agent, the sum of all
path lengths in any solution to the given problem thus can not be
shorter than LBtot.

The following theorem is a direct consequence of Theorem 7,
where the B-agent moves without a stop between steps in the proof
for NP-hardness, implying that LBms and LBmax having the same
value 3n+ k + 1.

Theorem 9 diMAPFdag,pl
⟨max,LBmax⟩ is NP-complete.

Regarding the lower bound of total distance, i.e., lbtot, a little bit
more is involved to prove the NP-completeness. An idea for such
a proof is given below, using the same example transformation as
before.

Theorem 10 diMAPFdag,pl
⟨tot,LBtot⟩ is NP-complete.

Proof The problem as a further restricted version to an NP-complete
problem, remains in NP.

In order to prove the NP-hardness of the problem, we can simply
revise the construction in the proof for Theorem 2. Note again that in
the original proof, the path length for the B-agent is the longest one
equaling to 3n+k+1, where n is the total number of variables, and k
is the total number of clauses in the RPMS-3SAT instance. The path
length for each v-agent is exactly 2. However, the path lengths for
c-agents differ from each other. Even for a given c-agent, the actual
path length varies, depending on which one of the three legs the agent
will take to reach its goal vertex.

In the revision, however, we ask the path length for any c-agent
traversing through any one of its three legs to be 3n + k + 1, al-
ways. This can be easily achieved by inserting an appropriate num-
ber of intermediate vertices on the leg-edges. Taking the c-agent c2
in Figure 4 for example (note that the path length for the B-agent is
3 · 4 + 3 + 1 = 16). The original path lengths traversing through
three different legs are 10, 7 and 4, respectively. We can insert ac-
cordingly 6, 9 and 12 intermediate vertices into the left, middle, and
right legs respectively. As such, should c2 reach its goal vertex cg2 ,
the path would always be 10 + 6 = 7 + 9 = 4 + 12 = 16.

Hence, a RPMS-3SAT instance is satisfiable iff the resulting
diMAPFdag,pl instance ⟨G(dag,pl),A, I,G⟩ admits a solution with
overall travel distance for all agents bounded by (k + 1)(3n + k +
1) + 2n = 3nk + k2 + 5n+ 2k + 1 steps5. □

We can again add the constraint on the degree of vertices (i.e.,
d ≤ 3) into the problem. That is, we can add up to k intermediated
vertices before entering these nodes such that the d ≤ 3 constraint
is further satisfied (see again Figure 3.(b) for illustration). The com-
plexity results also can be extended to sol. We have the following
result (actual proof skipped).

Theorem 11 All three of the following problems are NP-complete:
diMAPFdag,pl,d≤3

⟨ms,LBms⟩,sol, diMAPFdag,pl,d≤3
⟨max,LBmax⟩,sol and diMAPFdag,pl,d≤3

⟨tot,LBtot⟩,sol.

5 Discussion and Conclusion
Computational complexity of MAPF on directed graphs (i.e.,
diMAPF) was only recently studied [9, 10]. This paper investigates
the complexity of optimal diMAPF problems. That is,
1. the diMAPF problems are further subject to the optimization cri-

terion of minimizing either the makespan for all agents, the maxi-
mal travel distance for any agent, or the overall travel distance for
all agents; Meanwhile,

5 It is interesting to observe that we can simply use the transformation in
this current theorem to prove the NP-hardness part in both Theorem 7 and
Theorem 9, with minimal efforts involved. After all, these three theorems
deal with three NP-complete problems, which are closely related to each
other.

2. a variety of different special cases of the problem are considered.
For example, the digraphs are restricted to be planar, or/and are
with bounded vertex-degrees.

In particular, relationship between the results of [9, 10] and the ones
in this paper, is established by Theorem 1, Corollaries 5 and 6.

We identified a general intractability (i.e., NP-hardness) of all
these sub-problems. Nevertheless it is surprising to note that, for each
one of these three criteria, even if it is applied with the smallest-
possible value, optimal diMAPF remains to be NP-hard (e.g., Theo-
rems 7, 9, and 10, for the criteria of makespan, maximal travel dis-
tance, and total travel distance, respectively).

Theorem 2 is our primary result, where digraphs are restricted to
planar ones. Several more results easily follow. The availability of
these complexity results, which are related to planar graphs, in our
opinion has important real-world implications. For instance, we now
know that when on a two-dimensional space only (pl), with acyclic
one-way roads only (dag), and at most three-branch junctions only
(d ≤ 3), multi-agent path-finding is already computationally chal-
lenging (Theorem 11, in fact, regardless whether or not the problem
is subject to the makespan constraint).

Many real-world MAPF problems are indeed solvable if left un-
constrained – just allow one robot/agent to move at any given step.
However those theorems, where a solution “sol” is provided as ad-
ditional input, indicate that actual computational challenge lies in
whether the agents can arrive within the makespan (Theorems 8 and
11). In general, results in this paper should be helpful in pinpointing
sources contributing to the intractability, thus in guiding us for devel-
opment of better heuristics/algorithms for these problems. For exam-
ple, it would be interesting to study how these results are related to
the phenomenon of “pairwise symmetry” leading to collisions [3, 8].

For future work, while we know that the decision version of gen-
eral MAPF is poly-time solvable but the general decisional diMAPF
is NP-hard [7, 9], we do not know whether a similar difference could
be observed in any special case between the optimization version of
MAPF and the one of diMAPF. For example, we have Corollary 11,
but we do not know whether or not MAPFdag,pl,d≤3

⟨ms,LBms⟩,sol remains NP-
complete, or is poly-time solvable. The closest result so far, to our
best knowledge, is that optimal MAPF on a planar graph is NP-hard
[21, 20].

Acknowledgements

We would like to thank the referees for dedicating their time to read
our paper and for providing us with valuable feedback. Their con-
structive input has contributed to the improvement of this paper.

References

[1] Jacopo Banfi, Nicola Basilico, and Francesco Amigoni, ‘Intractability
of time-optimal multirobot path planning on 2d grid graphs with holes’,
IEEE Robotics and Automation Letters, 2(4), 1941–1947, (2017).

[2] Eli Boyarski, Ariel Felner, Roni Stern, Guni Sharon, David Tolpin,
Oded Betzalel, and Eyal Shimony, ‘ICBS: Improved conflict-based
search algorithm for multi-agent pathfinding’, in Proceedings of the
25th IJCAI, pp. 740–746, (2015).

[3] Zhe Chen, Daniel Damir Harabor, Jiaoyang Li, and Peter J. Stuckey,
‘Symmetry breaking for k-robust multi-agent path finding’, in Proceed-
ings of the 35th AAAI, pp. 12267–12274, (2021).

[4] Mark de Berg and Amirali Khosravi, ‘Optimal binary space partitions
in the plane’, in Computing and Combinatorics, eds., My T. Thai and
Sartaj Sahni, pp. 216–225, Berlin, Heidelberg, (2010). Springer Berlin
Heidelberg.

[5] Tzvika Geft and Dan Halperin, ‘Refined hardness of distance-optimal
multi-agent path finding’, in Proceedings of the 21st AAMAS, pp. 481–
488, (2022).

[6] Dan Halperin, J-C Latombe, and Randall H Wilson, ‘A general frame-
work for assembly planning: The motion space approach’, Algorith-
mica, 26(3), 577–601, (2000).

[7] D. Kornhauser, G. Miller, and P. Spirakis, ‘Coordinating pebble motion
on graphs, the diameter of permutation groups, and applications’, in
Proceedings of the 25th FOCS, pp. 241–250, (1984).

[8] Jiaoyang Li, Daniel Harabor, Peter J. Stuckey, Hang Ma, Graeme
Gange, and Sven Koenig, ‘Pairwise symmetry reasoning for multi-
agent path finding search’, Artificial Intelligence, 301, 103574, (2021).

[9] Bernhard Nebel, ‘On the computational complexity of multi-agent
pathfinding on directed graphs’, in Proceedings of the 30th ICAPS, pp.
212–216, (2020).

[10] Bernhard Nebel, ‘The small solution hypothesis for MAPF on strongly
connected directed graphs is true’, in Proceedings of the 33rd ICAPS,
pp. 304–313, (2023).

[11] Keisuke Okumura, François Bonnet, Yasumasa Tamura, and Xavier
Défago, ‘Offline time-independent multi-agent path planning’, in Pro-
ceedings of the 31st IJCAI, pp. 4649–4656, (2022).

[12] Oren Salzman and Dan Halperin, ‘Asymptotically near-optimal rrt for
fast, high-quality motion planning’, IEEE Transactions on Robotics,
32(3), 473–483, (2016).

[13] Oren Salzman and Roni Stern, ‘Research challenges and opportunities
in multi-agent path finding and multi-agent pickup and delivery prob-
lems’, in Proceedings of the 19th AAMAS, pp. 1711–1715, (2020).

[14] David Šišlák, Přemysl Volf, and Michal Pěchouček, ‘Agent-based coop-
erative decentralized airplane-collision avoidance’, IEEE Transactions
on Intelligent Transportation Systems, 12(1), 36–46, (2010).

[15] Trevor Standley, ‘Finding optimal solutions to cooperative pathfinding
problems’, in Proceedings of the 24th AAAI, pp. 173–178, (2010).

[16] Roni Stern, Nathan R. Sturtevant, Ariel Felner, Sven Koenig, Hang Ma,
Thayne T. Walker, Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish
Kumar, Roman Barták, and Eli Boyarski, ‘Multi-agent pathfinding:
Definitions, variants, and benchmarks’, in Proceedings of the 12th
SoCS, 2019, pp. 151–159, (2019).

[17] Pavel Surynek, ‘An optimization variant of multi-robot path planning is
intractable’, in Proceedings of the 24th AAAI, pp. 1261–1263, (2010).

[18] Jindrich Vodrázka, Roman Barták, and Jirí Svancara, ‘On modelling
multi-agent path finding as a classical planning problem’, in 32nd IEEE
International Conference on Tools with Artificial Intelligence, ICTAI
2020, Baltimore, MD, USA, November 9-11, 2020, pp. 23–28. IEEE,
(2020).

[19] Peter R. Wurman, Raffaello D’Andrea, and Mick Mountz, ‘Coordinat-
ing hundreds of cooperative, autonomous vehicles in warehouses’, AI
Magazine, 29(1), 9–20, (2008).

[20] Jingjin Yu, ‘Intractability of optimal multirobot path planning on planar
graphs’, IEEE Robotics and Automation Letters, 1(1), 33–40, (2016).

[21] Jingjin Yu and Steven M. LaValle, ‘Structure and intractability of op-
timal multi-robot path planning on graphs’, in Proceedings of the 27th
AAAI, pp. 1443–1449, (2013).

	Introduction
	Background
	On the Intractability of Severely Restricted Acyclic diMAPF Problems
	On the Computational Complexity of Optimal diMAPF Problems (OdP)
	OdP with Graph Restrictions
	OdP with Makespan Restrictions
	OdP with Restrictions on Path Length

	Discussion and Conclusion

