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Abstract

ICKEPS (International Competition on Knowledge Engineer-
ing for Planning and Scheduling) was created to make aware
of the importance of domain engineering for planning and
scheduling, but in past editions humans competed with the
help of planning tools, thus encouraging the development of
those tools (where humans were an integral part). We pro-
pose an IPC Domain Model Learning track, where learning
algorithms would compete completely on their own, creating
valid domain models without further use of input other than
the constraints (like input plans) they base upon. We believe
that this might help to establish some standard in the field of
domain model learning, such as a standard benchmark set,
standard inputs (possibly an input language), and metrics to
evaluate the learned domains against.

Introduction
Planning research is mostly focussed on developing plan-
ners, i.e., algorithms that derive plans from a (typically)
symbolic planning domain model. However for planning
to become attractive to practitioners, they not only require
ready access to planners but must also be able to create do-
main models with ease. Creating them is however a com-
plex knowledge engineering task requiring training and ex-
pert knowledge. One means to remedy this problem is to
use Domain Model Learning – i.e. autonomously inferring
a suitable domain model given samples from the domain. In
the past, there has been a substantial body of research in do-
main model learning, including both practical as well as the-
oretical aspects. Unfortunately, these approaches are rarely
comparable on an equal footing as they don’t make the same
assumptions or use different benchmark sets and metrics to
compare them.

We believe that an IPC track on Domain Model Learning
might help to establish some cohesion in this area and might
lead to an increased interest of practitioners. The proposed
track is in spirit similar to ICKEPS (International Competi-
tion on Knowledge Engineering for Planning and Schedul-
ing), but sets a different stage: while in ICKEPS humans
competed with the help of planning tools, in an IPC Domain
Model Learning track, learning algorithms would compete
completely on their own – setting the same focus as all other
IPC tracks.

Why Domain Model Learning?
The usability of planning hinges on the availability of suit-
able domain models. Creating such models often requires
both expertise in planning as well as in the application do-
main at hand. In successful applications, this has typically
happened either by a collaboration between planning re-
searchers and practitioners (Helmert and Lasinger 2010; Va-
quero et al. 2012; Kuter et al. 2018) or in highly research-
heavy settings (Bresina and Morris 2006; Chien et al. 2015).
For planning to be a true success story, the ability to use it –
and thus the ability to create suitable domain models – must
be made available to a broader audience. This includes, for
example, Small and Medium Enterprises (SMEs) that typi-
cally cannot afford the financial commitment involved in a
research-intensive process of domain modelling.

The approach of domain model learning is one means by
which this problem could be solved. Overviews of existing
methods are made available by Arora et al. (2018) and online
at https://macq.planning.domains by Callanan et al. (2022).
The task of domain model learning is to automatically infer
a planning domain model from given information. Typically,
this takes the form of given plans (i.e. action sequences that
are supposed to be solutions (Cresswell, McCluskey, and
West 2013; Cresswell and Gregory 2011)), full plan traces
(i.e. sequences of states traversed by solution plans (Jimenez
et al. 2012; Stern and Juba 2017; Aineto, Jiménez, and On-
aindia 2018; Arora et al. 2018; Juba, Le, and Stern 2021;
Bachor and Behnke 2024)), or partial plan traces with only
state features being observable (Yang, Wu, and Jiang 2007;
Aineto, Celorrio, and Onaindia 2019).

Some approaches assume an initial (flawed or incom-
plete) model on top of plans, often referred to as model re-
pair [McCluskey, Richardson, and Simpson, 2002; Lin and
Bercher, 2021; 2023; Lin, Höller, and Bercher, 2024]. Some
approaches to model repair also do not require input plans
or state traces, but instead assume an unsolvable problem
and attempt at making it solvable (Göbelbecker et al. 2010;
Xiao et al. 2020; Gragera et al. 2023) – we are however not
aiming at testing such works in this first edition. Also worth
noting in this context (despite us not aiming at testing this
in the proposed competition) is the work on model reconcil-
iations (Sreedharan, Chakraborti, and Kambhampati 2021;
Sreedharan, Bercher, and Kambhampati 2022), which, from
an abstract point of view, can also be referred to as model



repair, but bases on two given domain models and aims at
making changes to one of them, so that they explain the op-
timality of a given plan that happened to be optimal in the
other model already.

Most learners however learn the entire model from scratch
based on given plans/plan traces. Such plans or plan traces
can be expected to be easily generated or provided by appli-
cation experts, e.g., by describing the current workflow of a
factory or current lab procedures. Lin, Grastien, and Bercher
(2023) argue that this approach of providing plans (on top of
the existing model) is similar to the test and refine paradigm
known from programming and hence a canonical approach
to domain verification and repair as well.

Why a Competition on
Domain Model Learning?

While there has been some interest into domain model learn-
ing in the past, and some successful methods have been de-
veloped, research in domain model learning is quite diverse
and not easily usable in practice.

Typically, a competition establishes common ground for
the community in terms of (1) what to research, (2) which
problems to tackle, and most importantly (3) how to com-
pare different methods. More concretely, a competition first
of all requires a common understanding and definition of
what the problem of “domain model learning” to be tackled
actually is. This definition also helps to highlight nuances
and variants in domain model learning that have so far been
overlooked. Similarly, it makes the capabilities of the indi-
vidual domain model learners clear to other researchers and
practitioners and thus enables a more fair comparison. Next,
a competition would also yield a benchmark set for domain
model learning that can be used in the future to compare
newly developed domain model learners. This also includes
the formal definition of a common input language. Lastly,
the competition will also propose and use metrics to com-
pare the learners, which are then likely to be picked up by
other researchers.

What are the Inputs for
Domain Model Learning?

Typically, domain model learners take plans as their input.
While some learners focus on learning from a single plan,
typically, multiple plans are assumed as their input. How-
ever other modes or models are also conceivable. Notably,
one might consider to also provide negative examples of
plans, i.e., sequences of actions that should not be plans
in the learned domain. Providing such negative examples is
connected to the notion of justifications that we discuss on
page 4. For example, when providing a plan π to learn from,
we might provide the guarantee that this plan is optimal for
the domain to learn. This implicitly induces an exponential
amount of non-plan examples as well – as no shorter action
sequence can be a plan. Similarly, it could also be conceiv-
able to learn only from action sequences of length one, i.e.,
from triples of a state, an action, and a successor state – as
this is a format that a practitioner could produce reasonably
quickly.

How these plans look like is a matter of system capabil-
ities: The more information there is in the input, the more
can be used and the less the system must hypothesise about.
In practice, we believe a wide spectrum of possible inputs
makes sense here – depending on what the modeler already
knows. Some possibilities include:

• Action names without any parameters (the least informa-
tion possible)

• Action names with full groundings, i.e., parameter in-
stantiations (the most information possible when disre-
garding preconditions/effects)

• Action names with partial parameter instantiations or re-
strictions on parameters (partial knowledge is available,
e.g., that a vehicle type can be restricted to a car (type),
but it’s still not clear which concrete car)

• No action names at all, but we are given the full graph of
the transition system (Bonet and Geffner 2020).

• Any of the above, but with a pre-existing model, i.e., ac-
tions do already have preconditions and effects that might
have to be extended or exchanged (making this a model
repair problem).

In theory, even generalizations of the above might be con-
ceivable. For example, rather than providing an exact plan,
an agent might provide some sort of generalization thereof,
of which such a plan might just be a special case. For exam-
ple, instead of providing a specific action at a position, a dis-
junction of actions could be provided, thus modeling inse-
curity about what exactly has been observed. This however
only seems to make sense where plans are either “observed”
(with uncertainty) rather than generated by the modeler
him/herself. Similar situations have already been discussed
in plan and goal recognition (Keren, Gal, and Karpas 2020;
Meneguzzi and Pereira 2021) – when e.g. partial observabil-
ity of the performed actions is discussed. For the sake of sim-
plicity, a first competition on domain model learning should
however not consider too many settings here.

Most approaches then additionally assume that the states
that result from the execution of actions are at least partially
given (Yang, Wu, and Jiang 2007; Jimenez et al. 2012; Stern
and Juba 2017; Arora et al. 2018; Aineto, Jiménez, and On-
aindia 2018; Aineto, Celorrio, and Onaindia 2019; Juba, Le,
and Stern 2021).

On the other hand LOCM (Learning Object-Centred
Models) and LOCM2 (Gregory and Lindsay 2016) assume
that no state information is given and thus have to infer
the existence of state features. Similarly, the work by Bonet
and Geffner (2020) assumes that the input contains the set
of states, but these states do not have any internal factored
structure, which needs to be inferred.

As mentioned earlier, several systems (Lin, Grastien, and
Bercher 2023; Lin, Höller, and Bercher 2024) and theoret-
ical investigations (Lin and Bercher 2021, 2023) addition-
ally assume an already partial model to be provided (stem-
ming either from a domain modeler or novel tools, as based
on LLMs (Oswald et al. 2024a)), which has to be repaired
based on the additional input (i.e., plans). While these ap-
proaches can learn from an “empty domain”, the inverse is



not true for the other approaches – they typically can’t utilise
a given domain. It is worth pointing out that yet no approach
is a special case of the other: current approaches to repair
an existing domain cannot learn new state features (which
some classical learning approaches can), yet these classical
learning approaches can’t take existing models into account
making both approaches distinct lines of research (though
with the potential of being combined).

Given that creating initial versions of planning domains
has become much easier due to the usage of Large Lan-
guage Models (LLMs) or Natural Language Processing-
based techniques in general (Lindsay et al. 2017; Hayton
et al. 2020; Guan et al. 2023; Oswald et al. 2024a), we be-
lieve that the assumption of having such an initial model is
very reasonable – while at the same time it also shows the
necessity for validating and improving them based on fur-
ther explicit constraints provided by the user (such as plans
or plan places).

Further, it is also conceivable that the plans given as input
to the learners are in some sense noisy. While most learn-
ers assume that any given information inside of the plans is
correct, some can capture unreliable inputs (Mourão et al.
2012; Zhuo and Kambhampati 2013; Lamanna and Serafini
2024). This uncertainty can either be in the observed state
being unreliable (Mourão et al. 2012; Lamanna and Serafini
2024), or in the plan itself (Zhuo and Kambhampati 2013),
where either actions could be missing, the wrong actions, or
wrong parameters could have been observed.

Lastly, most learners assume that all plans from which the
model should be learned are given in one batch. It is however
also reasonable to first give the planner a batch of plans and
then allow the planner to query for additional information.
This could, e.g., be a specific plan where the planner inquires
for whether this is an intended solution to the planning prob-
lem. This way the learner is allowed to acquire the neces-
sary information to refine the domain model itself. These
approaches are called online learning approaches (Lamanna
et al. 2021), while the others are called offline learning.

We would like to note that the allowed input plans put
some restrictions on the type of the model to be learned.
E.g., if STRIPS or PDDL-style state descriptions are given,
a corresponding model has to be learned. This for exam-
ples excludes (without additional effort) to learn a Factored
Transition System model (Torralba and Sievers 2019) or an
SAS+ model (Bäckström and Nebel 1995). Similarly, if the
plan contains numeric elements (e.g., natural numbers as ar-
guments for actions), the learners are forced to learn numeric
models, which is potentially more difficult.

On which of these approaches (learning the entire model
based on action names only vs. repairing existing models) to
focus on – or potentially both – in a competition would be
subject to interest in the community.

What are the Outputs for
Domain Model Learning?

While at first glance it might look clear or obvious what the
desired output should be, i.e., what exactly it is that should
be learned, we believe that this deserves further discussion

– but at least it should be clearly specified. The first major
distinction is whether a grounded or lifted model should be
learned. For the grounded case, the learner can specify sep-
arate preconditions and effects for every action occurring
in the given plans. For the lifted case, it has to provide a
PDDL-style domain model that fits all ground actions given
in the plans. Here the amount of information given in the in-
put plays a role: if no, or not all action parameters are given,
the learner also has to decide on the actual parameter values
for these hidden parameters and thus on the action ground
instances occurring in he plan.

The most obvious “output” to learn is:

• all preconditions and effects of the input plans provided,
• additional actions (Bonet and Geffner 2020), which

makes sense when only the transition system of the prob-
lem is given but no action labels,

• in particular when a (partial) model to repair is given, the
question arises what may be changed: can only precondi-
tions and effects be added, or also exchanged/removed?
Can specific parts of the model be “blocked” from being
changed (since, e.g., the modeler expresses confidence
that this particular part is definitely correct or important).
Can action parameters be added/changed/deleted? For
example, can action parameter types be changed (e.g.,
more restricted)? The latter would also be up to debate
in the other settings where no preconditions/effects are
provided but only actions names and their parameters.

Similar to the question of what the allowed input should
be, the question about the computed output should likely be
discussed with the community to make sure that the very first
competition doesn’t exclude anybody interested. So we’d
likely aim for the least common denominator – but want to
engage with the community to see what is desired the most.

How to Evaluate Domain Model Learning?
Unfortunately, there is no standard benchmark set on which
domain model learning approaches are tested. The usual way
that researchers compare their approaches is the following:

1. Select a set of domains, normally from the IPC, and de-
clare them as the “ground truth”

2. Generate plans for the planning problems of this domain
(either for randomly generated problems or for the offi-
cial IPC problems)

3. Learn a domain from these plans
4. Compare the learned domain syntactically to the original

ground truth domain

This syntactic comparison mostly takes the form of comput-
ing the intersection and differences between the two models.
I.e. for every action a, one would compute |preground(a) ∩
prelearned(a)| as well as |preground(a)\prelearned(a)| and
|prelearned(a) \ preground(a)| (same for effects), and use
this as a score.

This metric has two severe problems. Firstly, the metric
compares syntax and not semantics. It is often possible to
describe the same domain with two syntactically different
descriptions. This is already evidenced by the large body on



research on domain re-writing, reformulation, and transfor-
mations . Thus, a syntactic metric at the end requires the
domain model learner to obtain the same syntactic represen-
tation of the problem as the original ground truth domain
did. It is possible to relax this requirement slightly by us-
ing the graph edit distance on a graph describing the lifted
model (Chrpa et al. 2023), which is able to take some syn-
tactic isomorphisms between predicates and objects into ac-
count. It is however limited to cases where actions are still
functionally bijective between the two models. However the
learner has no information available to make any sensible
inference w.r.t. the unknown ground truth model.

Secondly, at its core, this metric does not evaluate the do-
main model learner, but the set of sample plans that have
been drawn. Even a hypothetical “perfect” domain model
learner could get a bad score – if it is simply impossible to
derive the ground truth. Likewise, somebody who “inferred”
the ground truth would get a perfect score, despite poten-
tially just have been lucky.

Comparing two learners on this basis amounts to nothing
but evaluating either a random guess or an implicit inductive
bias of the learner – which in both cases, does not reveal any
information about the learner.

For the first problem, recent papers have proposed to com-
pare domains in a semantic way instead of a syntactic way.
One option is to only consider the reachability between pos-
sible initial states and goals. For this we consider the set
of all pairs of initial and goal states (sI , sG) so that there
is a plan leading from sI to sG. Two lifted domains are
functionally equivalent if for all sets of objects, the set of
these initial-goal pairs is the same (Shrinah, Long, and Eder
2021). To only consider sensible initial states (e.g., not ones
where a transporter is at two locations at the same time), one
might consider to restrict this definition to initial states only
that satisfy a description of possible initial states (Grundke,
Röger, and Helmert 2024). When it comes to domain learn-
ing, this definition could be somewhat problematic as it al-
lows for any transformation (renaming, splitting, merging)
of actions inside the models – not even the number of ac-
tions in both models has to be the same. As such, while we
think this approach is reasonable, we deem it too lax for a
competition as it allows learners do deviate too much from
given traces in terms of how which actions the model con-
tains.

Another approach is to compare domains by the plans
that solve their planning problems – essentially a more con-
crete version of Shrinah, Long, and Eder’s functional equiv-
alence (Oswald et al. 2024b; Vallati and Chrpa 2019). Ide-
ally, one would consider two domains are equivalent, if their
set of plans that solve them is the same, i.e., them being plan
equivalent (Vallati and Chrpa 2019). While computing the
set of plans is impossible, since this is potentially infinite,
one can regard each problem as a formal language (Höller
et al. 2014; Höller et al. 2016) and check whether those are
identical – by checking whether their “automata” or “gram-
mars” are identical, i.e., the underlying transition system.
This is what Chrpa et al. (2023) do: in case these are not
identical, they compute the edit distance (based on Answer
Set Programming).

While an edit distance on the domain might be a theoreti-
cally interesting approach, we would like to highlight a prac-
tical consideration: For someone applying domain model
learning it is important that (1) the learner does not gener-
ate a domain that admits invalid plans (what Juba, Le, and
Stern (2021) call safe domain model learning) and that (2)
the learned domain does not exclude actually valid plans.
The notion of an edit distance does not correlate with this
intuitive notion: even a minimal change to a domain (think:
removing the deleting effect on a move action) can have a
catastrophic effect of the practical usefulness of the learned
domain. In essence: not all edits are made equal – some ed-
its to a domain are more problematic than others. An alter-
native approach could use an approximation of the set of
plans that a domain admits: We only consider the k short-
est non-redundant plans of the domain – determining these
plans is typically called top-k planning (Katz et al. 2018;
Speck, Mattmüller, and Nebel 2020) and planners able to
find non-redundant top-k plans are available (von Tscham-
mer, Mattmüller, and Speck 2022). Using a top-k planner,
these sets can be efficiently determined for both the “ground
truth” and the learned domain. We can then use the size of
the intersection and set differences between these sets as a
metric for the quality of the learned domain. One author has
already used this method successfully in teaching.

The second problem is however much harder to resolve.
The optimal solution here would be to formally define which
conclusions about the original domain can be drawn based
on a set of sample plans and then only evaluate this infer-
ence. (This is in line with what Lin and Bercher (2021) do
provided an initial model is given, as they compute the min-
imal number changes required to the model that are in line
with the sample plans. Though this isn’t a satisfying solution
either as it only guarantees to find a model with minimal edit
distance, but it might still not be the perfectly desired one.)

This is however only possible in very controlled settings.
One such idea was recently presented by Bachor and Behnke
(2024). Here, the given plans come with a guarantee of non-
redundancy, namely well or perfect justification (Fink and
Yang 1992). A plan is well justified, if removing any one
action makes it invalid (either non-executable or non-goal-
achieving), while it is perfectly justified if removing any
subset of its actions makes it invalid. To evaluate a learner in
this setting, we would still generate a set of plans Π from a
“ground truth”, s.t. they are either well or perfectly justified.
We would then forget the original domain and only use Π as
a metric. The domain model learner’s task is then to infer a
domain D. To test the validity of this domain, we then de-
termine for every plan π ∈ Π whether it is well or perfectly
justified in the learned domain D. If it is, the learned domain
is correct, and incorrect otherwise.

For a competition, this setting might however not be prac-
tical, as the learners have to be specifically designed for this
setting. Instead we could use a stochastic evaluation. If we
choose the set of sample plans large enough, it is likely that
these plans will unique characterise the ground truth domain.
We could thus let the learner learn a domain from multiple
sets of samples for the same ground domain. On average,
learners with higher “correctness” are then expected to learn



the correct domain model more often. I.e. we could use the
success rate or the mean accuracy (based on the above met-
rics).

Another route would be to let the learners allow to decide
themselves how many samples they need. We again assume
a ground truth domain Π. The learners can then draw sam-
ple plans from this domain Π until they are satisfied that they
have drawn enough samples to be able to infer a learned do-
main Πℓ that is semantically equivalent to Π (i.e. both have
the same set of plans). The score of a planner in this setting
would be the number of samples it needs to characterise the
correct domain.

In case a domain model is already provided, another ques-
tion is how this is taken into account. Lin, Grastien, and
Bercher (2023) and Lin, Höller, and Bercher (2024) chose to
find the minimal number of repairs that make the resulting
model compatible with the requested properties (such as the
demanded plans), though there are several other metrics that
could make sense, for example not reducing the set of plans
that the original model admitted, not increasing it (beyond
the ones provided), and many more. So there is no single
evaluation metric that’s “the right choice”, there are several
one may argue for, and possibly several of them could be
offered, e.g., in different tracks similar to the standard IPC
where coverage and agile (often referred to as the IPC score,
i.e., min{1, 1 − log(t)

log(t)} for time limit T and runtime t) are
two of the best known ones.

Conclusion and Next Steps
In this paper we proposed to establish a track on learning
domain models at the IPC. This might address the issue
of missing cohesion in this line of research, of the various
approaches differ in assumptions, use different benchmark
sets, and metrics to compare them. That said, several of these
questions still had to be clarified for such a competition,
most notably what the input is (e.g., plans, non-plans, plan
traces, a partial (flawed) initial model to repair) and how to
evaluate the learned domain. A possible way to resolve these
open questions is by branching some of the most canonical
and useful answers to these questions into multiple tracks.
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Göbelbecker, M.; Keller, T.; Eyerich, P.; Brenner, M.; and
Nebel, B. 2010. Coming up With Good Excuses: What to
do When no Plan Can be Found. In Proceedings of the
20nd International Conference on Automated Planning and
Scheduling (ICAPS 2010), 81–88. AAAI Press.
Gragera, A.; Fuentetaja, R.; Olaya, Á. G.; and Fernández, F.
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