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Abstract

Automated Planning deals with finding a sequence
of actions that solves a given (planning) problem.
The cost of the solution is a direct consequence of
these actions, for example its number or their accu-
mulated costs. Thus, in most applications, cheaper
plans are preferred. Yet, finding an optimal solu-
tion is more challenging than finding some solu-
tion. So, many planning algorithms find some so-
Iution and then post-process, i.e., optimize it — a
technique called plan optimization. Over the years
many different approaches were developed, not all
for the same kind of plans, and not all optimize the
same metric. In this comprehensive survey, we give
an overview of the existing plan optimization goals,
their computational complexity (if known), and ex-
isting techniques for such optimizations.

1 Introduction

Automated Planning aims at finding a course of action based
on a declarative model of the the environment, the actor’s
available actions, and a goal to achieve. There are many
different kinds of planning frameworks [Geffner and Bonet,
2013], some more complex than others: The simplest ones
build on a model, where there is just a single agent, the
environment is fully observable, and actions are determin-
istic. Extensions include, among others, dealing with time,
resources, uncertainty, and all of them with or without a hier-
archy defined among the actions. Solutions to such problems
are usually one of the following two: (1) Totally or partially
ordered sequences of actions that one has to execute in an
order adhering the given ordering constraints, or (2) policies
that map states to actions (this is usually deployed in settings
with uncertainty, as a simple action sequence is not expressive
enough to tell how to act).

Finding optimal solutions to planning problems is com-
monly known to be a much harder task than finding any,
i.e., suboptimal solution. This is effectively demonstrated by
Helmert and Roger [2008] who provided a seminal analysis
showing that on certain planning benchmarks A* is bound to
explore an exponentially large search space even with an al-
most perfect heuristic, which they define as a heuristic h that
in each state equals the perfect heuristic h* minus a small

constant. That is, in some domains searching for an optimal
solution is bound to require a large effort, making it infeasibly
hard. It is often more efficient to choose a suboptimal search
procedure, which is not guaranteed to find optimal solutions,
and thus usually does not. Having a (potentially) suboptimal
solution at hand, one may then opt for post-optimizing it, i.e.,
by improving it without simply continuing the search.

Different plan metrics (such as number of actions, their
costs, number of ordering constraints, or number of their
induced linearizations) have been considered for optimiza-
tion, their computational complexities investigated, and sev-
eral kinds of techniques have been devised over the years.
In this paper, we comprehensively survey plan optimization
criteria, their complexities, and techniques. To the best of
our knowledge, this is the first survey of such breadth, al-
though an overview focused on plan cost optimization is, de-
spite missing developments past its publication, still worth
mentioning [Kilani and Chrpa, 2013].

We start with Section 2, which gives a brief overview of
work that is only somehow related to our survey. More specif-
ically, we narrow down the exact scope of the survey while
also mentioning lines of research which technically fall out-
side of it, but are still worth being mentioned. Section 3 pro-
vides key concepts of the formalizations underlying most of
the surveyed work. We then start with our actual survey in
three main sections:

 Section 4 reviews known complexity results related to
plan optimization.

 Section 5 is concerned with practical approaches that
aim to optimize a given solution plan’s actions, i.e., by
substituting or removing them thus reducing costs.

* Section 6 reviews work that optimizes plans’ orderings,
i.e., by rearranging actions or removing ordering con-
straints. This is usually important in practice where flex-
ibility is crucial or execution order plays a role that’s not
captured in the plan metric used to generate solutions.

Finally, in Section 7 we conclude this survey.

2 Scope of This Survey

In this paper, we survey literature that directly works on a
given solution plan (or policy) and tries to improve it, specif-
ically by removing or replacing parts of it — as this is what is
usually referred to as plan optimization.



However, in this section, we want to mention some lines of
research which are closely related to the endeavor of finding
a better plan, but do not quite match our precise inclusion
criterion from above. We do so as some of these research
directions can still be used to find better plans.

Anytime and Incremental Search. There are several
search algorithms that, upon encountering a solution, con-
tinue the search, systematically, for a solution of better qual-
ity, eventually converging to an optimal solution. The sim-
plest exemplar is branch-and-bound [Land and Doig, 1960],
but versions of the idea are found in, for example, beam-stack
search [Zhou and Hansen, 2005], anytime A* [Hansen and
Zhou, 20071, and limited discrepancy (beam) search [Harvey
and Ginsberg, 1995; Furcy and Koenig, 2005]. We exclude
such algorithms from this survey because, although they may
use information about the best solution found so far, they also
rely on other information about the search process so far (e.g.,
branches of a search tree that have already been explored
and found not to yield an improving solution). Population-
based meta-heuristics (see, e.g., the survey by Blum and Roli
[2003]) also share this characteristic, without the convergence
guarantee.

Bounded-Cost and Bounded Suboptimal Search. The
default objective in non-optimal planning (or search) is to
simply produce any plan as quickly as possible, i.e., with-
out regard for quality. A bounded-cost search algorithm takes
as input a cost bound, and aims to find a solution within that
bound as quickly as possible, i.e., without expending effort on
achieving a better-quality solution than required by the bound
[Stern et al., 2011; Thayer et al., 2012]. Bounded suboptimal
search algorithms, the most famous of which is Weighted A*
[Pohl, 1970], take a relative bound parameter w and ensure
the solution found is within a factor w of optimal. A series
of increasingly better plans can be found by repeatedly ap-
plying a bounded-cost or suboptimal search algorithm, with
the bound in each iteration set to yield an improvement on
the last plan found [Richter et al., 2010]. Although this can
be viewed as a form of plan improvement, it is uninformed
in that it makes no use of the input plan beyond its cost or
suboptimality bound.

Diverse planning. Producing a set of diverse plans for a
problem instance can be useful to achieve robustness, in ad-
versarial settings, or when the user’s objective function is not
fully known. The diversity of the plan set can be combined
with the objective of optimizing the quality of each plan in
the set in different ways [Katz and Sohrabi, 2020]. Similar to
plan quality optimization, while some approaches to diverse
planning have used continuing search [Srivastava er al., 2007;
Nguyen et al., 2012], a set of diverse plans can also be gen-
erated incrementally, by repeatedly solving the problem with
the added constraint that the next plan must not have some
property shared by all plans in the set found so far; such con-
straints can be compiled into the problem [Katz and Sohrabi,
20201, or expressed using PDDL3’s trajectory constraints
[Alfonso Gerevini, pers. comm.]

Plan Repair and Reuse. Plan repair deals with the situa-
tion where a plan fails in execution due to unexpected state
changes, inaccuracies in the domain model, or perhaps due

to some guess and verify/repair approach. The goal is then
to find a new, valid plan, given the updated world knowl-
edge if any. While replanning from scratch is one option,
repairing the failed plan by making limited changes may save
time, and there can also be a value in minimizing the de-
viation from the original plan, for instance if the changes
need to be communicated to and understood by (multiple)
humans. In plan adaptation, a solution plan is known for a
problem instance that is similar to the present one, and the
goal is to adapt it to the present problem to avoid having to
solve it from scratch (see, e.g., the survey by Borrajo et al.
[2015]). Plan repair and adaptation approaches have been de-
veloped for classical [Gerevini and Serina, 2000], numeric
[Scala and Torasso, 2015] and hierarchical planning [Bercher
et al., 2014; Héller et al., 2020; Bartdk et al., 2021]. Sev-
eral works compared plan-reuse with planning from scratch,
both empirically, theoretically, and with different plan sim-
ilarity measures [Nebel and Kéhler, 1995; Fox et al., 2006;
Babli er al., 2023]. The similarity with plan optimization is
that a plan is given, and the aim to exploit that in the pursuit
of a different plan. However, in plan repair or adaptation, the
main objective is to restore or achieve plan validity, not im-
proving plan quality or cost, and typically under stricter time
or resource constraints.

Model Repair. Another line of research that is worth men-
tioning in our context is model repair. In one of its settings,
one is given a plan that is supposed to be a solution, but is
not (similar to plan repair/reuse). In order to make it a so-
lution, the underlying model gets repaired (as opposed to the
plan as done in plan repair/reuse). Works exist both for classi-
cal planning [McCluskey et al., 2002; Lin and Bercher, 2021;
Lin et al., 2023; Gragera et al., 2023] as well as in hierar-
chical planning [McCluskey et al., 2002; Lin and Bercher,
2021;2023]. In both settings, checking whether such changes
are possible is NP-complete [Lin and Bercher, 2021; 2023].
Closely related is what’s called model reconciliation [Sreed-
haran er al., 2021]. Here, on top of being provided a plan and
a planning model, a second model is being provided. One
model is supposed to be the ground truth (by some robot)
whereas the other is a human’s mental model of it. The plan
is optimal in the ground truth, but not according to the hu-
man’s model thereof. To explain the discrepancy, a minimal
set of change operations to the human’s model is desired (the
explanations) that make the plan optimal in that new model.
Checking whether achieving this is possible with at most &
model changes was proved to be X1’ -complete [Sreedharan
et al., 2022], a class that is NP-hard and presumably slightly
harder. In the work surveyed in the remainder we do however
not change the model, but assume its correctness.

Plan Explanation. Lastly, we would like to point out a
loose relationship between plan optimization and plan expla-
nations [Chakraborti et al., 2020]. Whereas some plan expla-
nation approaches (specifically those that aim at explaining
the necessity or purpose of an action in a plan') do so by
simply “explaining” a chain of actions from said action to a
goal, sometimes by following a chain of causal links [Bercher

"For a comprehensive overview of possible kinds of explanations
in general we refer to the work by Miller [2019].



et al., 2014] (we provide a definition of causal links in Sec-
tion 3), these approaches are problematic for several reasons
[Lindner and Olz, 2022]. For example, simply explaining the
purpose of an action in a plan might be counter-intuitive if
that action turns out to not be required in that plan, i.e., if an
optimization exists that removes that action. Thus, one obser-
vation is that if a given plan can not be optimized to remove
a specific action, then this forms an argument for the neces-
sity of that action (in that plan). Thus, some plan explanation
techniques do require that the plan to be explained is already
optimized [Lindner and Olz, 2022] thus further showing the
necessity for optimization.

3 Problem Formalization

We survey plan optimizations for formalisms in different
frameworks. The simplest model of planning bases on clas-
sical STRIPS models where solutions are totally ordered se-
quences of actions in a fully observable deterministic envi-
ronment. Most extensions to this model require significant
changes to the underlying formalism. For example, for deal-
ing with uncertainty, definitions of actions differ and even
plans (i.e., solutions) are extended to policies, mapping states
to actions with certain guarantees on success probabilities.
Since providing all these different frameworks on a formal
level is neither feasible given the space constraints, nor re-
quired for the sake of our summary, we won’t provide most
formalisms on a deep technical level. Instead, we provide
only the most simple formalization — the STRIPS model —
formally as well as some base concepts for its extension to
hierarchical planning and explain differences when required.

3.1 Classical (STRIPS) Planning

A classical problem can be defined in a propositional fashion
as a 4-tuple (F, A, sy, g), where F is a finite set of facts (en-
coding all relevant state properties), A C 25 x2F x2F isa (fi-
nite) set of actions (encoding state transitions), s; € 2 is the
initial state (from which planning or plan execution starts),
and g C F'is the goal description (the set of facts required
to hold eventually). Each action (pre, add, del) € A consists
of a precondition pre C F', add list add C F, and delete list
del C F'. Given an action a € A, we refer to these three el-
ements as pre(a), add(a), and del(a), respectively. The pre-
condition specifies which properties must hold for an action
to be applicable in a state, i.e., an action a € A is applicable
in a state s € 2% if and only if pre(a) C s. If a is applicable
in s, then it leads to a successor state defined by its effects,
s’ = (s\ del(a)) U add(a). Applicability of a sequence of
actions is defined in the canonical sense, requiring that each
action is applicable in the state right before it. Finally, an ac-
tion sequence @ = aq, ..., a, is called a solution (or plan) if
it is applicable in the initial state s; and leads to a state s’ that
makes all goals true, s’ D g.

Whereas STRIPS is often chosen for simplicity in scientific
papers, in practice, problems are provided in a lifted fashion,
where facts and actions base on a predicate logic. Since some
of the surveyed approaches base on such a formalization as
well, we provide a running example based on such a lifted for-
malization: In the well-known Blocksworld domain, we are

given a set of towers of blocks, where each block lies either on
the table or on another block. An action pickup(?b) picks up
a block ?b (we use question marks to denote variables) from
the table into a gripper, whereas unstack(?b,,?b2) removes
a clear (top-most) block ?b; from another block ?b,. Ac-
tions stack(?b1,?b2) and putdown(?b,) put down a block from
the gripper onto another block or onto the table, respectively.
Such lifted representations can be turned into propositional
ones by grounding, i.e., by replacing variables by constants
(here, each constant A, B, ... represents one block).

Because plan optimization, as well as the respective com-
plexity results, depend on the representation of plans, we first
present different ways that plans may be represented:

* Sequential plans (action sequences)

* Partially ordered plans (PO plans)

* Block-decomposed PO plans (BDPO plans)

e Partial Order Causal Link plans (POCL plans)

A Sequential plan is simply an action sequence, as defined for
STRIPS. A PO plan maintains only a partial order among ac-
tions [Nebel and Bickstrom, 1994; Bickstrom, 1998]. For
a PO plan to be valid requires that every sequence of the
plan’s actions compatible with the partial order (a so-called
linearization) is a valid sequential plan. A BDPO plan ex-
tends the PO plan representation with a decomposition of the
actions into subsets (termed “blocks”), which may be recur-
sive. Like a PO plan, it represents a set of linearizations, but
with the additional restriction that actions in a block cannot
be interleaved with actions outside the block [Siddiqui and
Haslum, 2012; 2013; 2015].2 For example, in Fig. 1(b), the
two 2-action blocks on the right can be placed in any order,
but not interleaved. POCL plans are another extension of
PO plans, introducing so-called causal links [Bercher, 20211,
which make explicit which action’s effects will satisfy each
precondition and goal, thus making it easier to reason about
the plan’s validity. More precisely, each causal link supports
and thus protects a single precondition p. Every action that
deletes p must be ordered before the link’s producer or after
the link’s consumer to resolve this so-called causal threat.
Most algorithms and encodings do use POCL plans rather
than PO plans. Fig. 1(a) shows an example POCL plan in
the Blocksworld domain with two grippers.

In the context of partially ordered plans, one is often inter-
ested in (the optimization of) various properties concerning
the partial order, specifically in number of linearizations, the
number of ordering constraints, or the makespan, which is the
critical path length, i.e., execution time when assuming that
non-conflicting actions are executed in parallel (for the plan
in Fig. 1(a) this would be 4, while for both plans in Fig. 2,
where no parallelism is possible, it is 6).

3.2 Hierarchical Planning

Hierarchical task network (HTN) planning is an extension of
classical planning [Erol ef al., 1996; Ghallab et al., 2004;
Bercher ez al., 2019] that can easiest be described as an addi-
tional constraint that solution plans must satisfy: Here action

“Note that we only cite the works by Siddiqui and Haslum [2012;
2013] for the sake of completeness of this survey but would like to
note that their article from 2015 subsumes them completely.
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Figure 1: Example plans. Arrows between preconditions and effects denote causal links, other arrows are ordering constraints. Predicate
abbreviations: clr means clear, gF means gripperFree, gH means gripperHolding, and onT means onTable.

Subfigure b: A reordering of the plan in Fig. 2(a) with causal link structure changed accordingly.

Figure 2: Two totally ordered POCL plans, each a re-ordering of the other. Both solve the depicted problem.

sequences don’t just have to be executable and make the goal
true, but additionally need to lie within “the language” of a
given grammar. For this latter restriction, HTN problems also
contain compound tasks as well as so-called decomposition
methods, which map a single compound task to a partially
(or totally) ordered sequence of compound or primitive tasks
(primitive tasks are exactly the actions). Thus, HTN planning
organizes actions in a hierarchical manner, perfectly analo-
gous to formal grammars. Whereas the language of a formal
grammar equals all strings of terminal symbols that can be
produced by the grammar, the set of solutions to an HTN
planning problem is defined as the set of all executable and
goal-achieving action sequences that can be obtained from
a given initial compound task. As mentioned initially, the
underlying task hierarchy can hence be regarded as an ad-
ditional constraint, ruling out those action sequences which
do not adhere to the HTN problem’s grammar/task hierarchy.
We include it here, since a range of results for plan optimiza-
tion have also been achieved for this hierarchical setting. For
further details on the formalism we refer to the survey by
Bercher et al. [2019].

3.3 Plan Optimization Problems

Before we start our survey we provide an informal introduc-
tion to the most basic questions regarding plan optimization
that have been studied in the literature.

* Given plan P, is there a smaller or cheaper plan P’
(where P’ is obtained via removal or the substitution of
actions from P), such that P’ still is a solution to the
underlying problem?

* Given plan P, is there a reordering or deordering of
P with certain properties, e.g., smaller makespan or
smaller number of ordering constraints? Here, a reorder-
ing is a plan with the same actions but possibly different
ordering constraints, and a deordering is a plan with the
same actions and a subset of the ordering constraints.

Plans of the first kind are usually referred to as redundant,
and most work within the post-optimization literature is on
identifying and removing such (action) redundancies.



4 Complexity Investigations

We now look into complexity investigations of post-
optimization problems, starting with improving a plan’s ac-
tions, and then its orderings or linearizations.

4.1 Optimization of Plan Length/Cost

Fink and Yang [1992] defined four different levels of non-
redundancy, which they term justification, of a (sequential)
plan: A plan is backward-justified if every of its actions is
the last achiever of a fact in the precondition of some later
action or the goal; well-justified if no single action can be
removed without invalidating the plan; perfectly justified if
no proper subsequence of it is also a valid plan; and greed-
ily justified if removing any action and its direct and indirect
dependents invalidates the plan. Fig. 2(a), when ignoring the
causal link structure, depicts a perfectly justified sequential
plan. Fig. 2(b) is neither perfectly justified nor greedily, but
satisfies all other criteria. For all criteria except perfect justi-
fication, a subplan achieving them can be computed in poly-
nomial time. For perfect justifications, Fink and Yang [1992]
proved the respective decision problem to be NP-complete.
Later and independently Nakhost and Miiller [2010b] also
showed that, given a (sequential) plan P and a cost value k,
determining whether a subplan of P with cost smaller than k
exists is NP-hard.

Note how the problem becomes hard because we neither
know how many actions might be removed nor which ones,
so one has to systematically try out all these options. In a
much more recent work, Olz and Bercher [2019] have shown
that the corresponding problem becomes significantly harder
when reasoning about partially ordered plans. More specifi-
cally, in the context of POCL plans, they showed that even
checking whether a single given action can be removed is
already NP-complete. The complexity arises from checking
whether the partial order and causal links can be refined again
(via ordering and causal link insertion) after action deletion so
that all linearizations remain executable.

Only loosely related is the question of whether a given (se-
quential or partially ordered) plan is optimal. Of course, if a
plan is an optimal solution, then the plan can also not be op-
timized (hence, optimality implies perfect justification). If,
however the plan is not an optimal solution, it might still
be perfectly justified. Determining plan(length) optimality is
naturally co-NP-complete — both for (ground) classical and
HTN planning [Lin et al., 2024].

The work by Barték er al. [2021] technically falls both into
the category of plan repair and plan optimization. Starting
from a non-solution action sequence for an HTN planning
problem, they seek to optimize (i.e., repair) it by identify-
ing a minimal number of actions to remove from it so that
the resulting plan turns into a solution. Their motivation is
to stay as close to the input plan as possible (hence we can
regard it as optimization of a given plan). They showed this
problem to be, unsurprisingly, NP-complete. Also in the con-
text of HTN planning, Behnke et al. [2016] investigated the
complexity of (user-provided) change requests: given a plan
for an HTN problem, the complexity of changing certain plan
properties, such as enforcing that a certain action occurs in the
modified solution, or to avoid a certain action altogether, was

investigated. Depending on the exact change request, com-
plexity ranges between NP-complete to undecidable. In all
HTN optimization approaches, an additional source of com-
putational hardness always arises from the verification that
checks whether the resulting task network still lies in the task
hierarchy — which is by itself already NP-hard unless every-
thing is totally ordered [Behnke er al., 2015].

4.2 Optimization of Orderings and Linearizations

For the optimization of ordering constraints, most work nat-
urally involves PO or POCL plans. Nebel and Béckstrom
[1994], building on work by Dean and Boddy [1988] inves-
tigated complexities for temporal projection, planning, and
plan verification. These works are not directly related to plan
optimization, but given that they are seminal works related
to partially ordered plans, we wanted to mention them never-
theless (notably, investigations include the question whether
an executable linearization exists, which is inherent in many
optimizations). Bickstrom [1998] investigated a range of
complexity questions regarding the reordering and deorder-
ing of PO plans, such as deciding whether a reordering or
deordering with a given bound on the number of resulting
ordering constraints exists. Although he showed several rea-
soning tasks to be NP-complete, we would like to emphasize
the depth and width of the analyses, which makes it challeng-
ing to succinctly summarize all the detailed findings with-
out omitting significant aspects. In addition, Backstrom also
investigated what he called parallel plans, an extension of
PO plans with the addition of non-concurrency constraints
which forbid certain actions to execute in parallel even if
otherwise feasible. More recently, Aghighi and Béckstrom
[2017] re-visited several of these findings, conducting a pa-
rameterized complexity analysis, considering various param-
eters, such as the original and desired size of the ordering and
non-concurrency relations, among others.

Bercher and Olz [2020] also extended the work by
Bickstrom [1998]. More specifically, Bickstrom [1998] left
open one interesting question, namely about the computa-
tional hardness of checking for the existence of the deorder-
ing of PO plans with a specific makespan. This was proved
NP-complete [Bercher and Olz, 2020]. Another contribution
of the paper by Bercher and Olz [2020] was to make aware of
subtle but important difference between PO plans and POCL
plans, namely that there exist POCL plans for which there do
not exist PO plans with the exact same ordering constraints
and linearizations (cf. their Figure 1). This is also important
in the context of plan optimization as it proves that the cho-
sen data structure — PO plan versus POCL plan — influences
which orderings and linearizations one could obtain.

Finally, note that the work by Behnke et al. [2016] on plan
optimization/change requests for HTN plans, mentioned ear-
lier, also covers various changes/requests related to the order-
ing constraints.

S Approaches to Optimize Plan Length/Cost

The biggest body of work exists for improving a given solu-
tion. This involves questions like checking whether a certain
(number of) action(s) is redundant and whether they could



even be replaced by others. We organize this section by how
the different kinds of approaches work.

5.1 Removing Redundant Actions

The tractable plan optimizations identified by Fink and
Yang [1992] (cf. last section) have been used by several
researchers: Nakhost and Miiller [2010a; 2010b] applied
greedy justification (under the name ‘“action elimination’)
along with their PNGS method (discussed below). Balyo ef
al. [2014] extended the greedy justification algorithm to con-
sider action costs, and select the greedily unjustified action
set with the highest total cost to remove. They also imple-
mented perfect justification via a MaxSAT encoding, and the
action-cost sensitive formulation of it (i.e., finding the valid
subplan of minimum cost) using Weighted MaxSAT. This al-
lowed them to compare, empirically, the plan length and cost
reduction achieved by the tractable algorithms compared to
the perfect result. Their greedy action elimination achieved
over 80% of the perfect cost reduction for all but one of
the planner—domain pairings in their benchmark set. Inter-
estingly, the performance of the tractable justification algo-
rithms, relative to perfect-cost justification, seemed to depend
to some extent on which planner had generated the input plan.
Salerno et al. [2023] implemented cost-sensitive perfect jus-
tification via (optimal) classical planning instead. Med and
Chrpa [2022] revisited action elimination, focusing on how to
speed up the search for redundant action subsequences, for in-
stance by identifying actions in the plan that are easily shown
to be not redundant.

The notion of subplan above preserves the order of re-
maining actions from the original plan. However, de-
ordering and reordering can also play a key role in iden-
tifying and removing redundancy from a plan. Consider
our earlier Blocksworld problem with one gripper, initial
state {on(A,C), onTable(B), onTable(C), onTable(D), clear(A),
clear(B), clear(D), gripperFree}, and the goal of making
on(A,B) and on(D,C) true. Two sequential plans for this prob-
lem are shown in Fig. 2. No subsequence of the first plan
(Fig. 2(a)) is a valid plan; this plan is already perfectly justi-
fied. The second plan however (Fig. 2(b)), is a reordering of
this plan (same actions, but in a different, but also valid, or-
der); in this plan the subsequence putdown(A), pickup(A) can
be removed. Chrpa er al. [2012a; 2012b] used this idea for
searching for pairs of such inverse actions that can occur next
to each other after plan deordering.

Similar to the work by Balyo et al. [2014], the work of
Muise et al. [2012; 2016]° uses a MaxSAT encoding to com-
pute plans with a subset of actions that have a minimum total
cost. This approach simultaneously reorders the plan and is
described further in Section 6 below.

Sreedharan er al. [2023] introduce a generalized form of
action justification that applies to conditional plans or policies
for non-deterministic domains. While they do not explore
the impact of optimizing these conditional plans via action
removal, that is a natural direction of future work.

In HTN planning, the task of plan optimization has not

3We only cite the work by Muise ef al. [2012] for the sake of
completeness but note that their 2016 article subsumes it completely.

yet seen as much attention as non-hierarchical planning. The
only approach we are aware of is that by Bartédk et al. [2021],
who exploit the similarity between formal grammars and
HTN problems by adapting a parsing-based approach for plan
verification to identify the minimal number of actions that can
be deleted from a plan to turn it into a solution.

5.2 Replacing Subplans

The next step from removing redundant parts of a plan is to
replace parts of it, such that the total plan length, cost, or
makespan is reduced. The search for a replacement subplan
is itself a planning problem: restricting it to a (small) segment
of the original plan, with bounded cost, restricts the potential
search depth, hence the expectation is that the subproblems
will be easier to solve. Ratner and Pohl [1986] select fixed-
size consecutive segments along a path in a graph and search
for a shorter replacement path for each. Estrem and Kreb-
sbach [2012] select pairs of states along the plan trajectory
that maximize an estimate of redundancy: the ratio between
a heuristic estimate of distance between the two states and
the cost of the current plan segment. Balyo et al. [2012a;
2012b] apply sliding and randomly selected fixed-size win-
dows over a parallel plan, using a SAT encoding to decide if
a shorter (by parallel length) replacement subplan exists.

Also in this case, deordering or reordering the plan allows
greater opportunities to identify improvable subplans, as the
actions of the subplan do not have to be consecutive in the
input plan. Siddiqui and Haslum [2015] showed that apply-
ing their iterated subplan improvement procedure to a BDPO
representation of the input plan yielded around 40% greater
improvement compared to the same procedure applied to the
original, totally ordered, plan. This is because the block de-
ordering can represent reorderings of the original plan: for
example, the two reorderings in Fig. 2 are both linearizations
of the BDPO plan in Fig. 1.

The planning-by-rewriting approach by Ambite and
Knoblock [2001] also uses local modifications of partially or-
dered plans to improve their quality. Plan modifications are
made by domain-specific rewrite rules, which have to be pro-
vided by the domain designer or learned from many examples
of both good and bad plans.

Relaxing Specific Actions. Closely related to replacing
subplans is the work by Waters er al. [2018; 2020]. Their ap-
proach works on a lifted action representation, and considers
substituting actions’ arguments. Their approach thus “tech-
nically” fits into this section since the resulting ground plans
are obtained by replacing the original ground actions from the
input plan (although from the same lifted action schemas).
However, their goal is to improve plan flexibility, so we re-
view it in more detail in the next section, which is concerned
with the optimization of orderings and linearizations.

Searching the Plan Neighborhood. Plan Neighborhood
Graph Search (PNGS) [Nakhost and Miiller, 2010al con-
structs a subgraph of the state space of the problem, built
around the path induced by the current plan by expand-
ing only states within a limited distance from those on that
path. It then searches for the least-cost plan in this subgraph.
ITSA* [Furcy, 2006] similarly explores an area, called a tun-



nel, of the state space, restricted to a fixed distance from the
current plan. Compared to the subplan replacement methods
discussed above, PNGS is not limited to finding a replace-
ment for a selected part of the input plan — it can replace
the whole plan — but instead, to limit search effort, restricted
in how far away from the current plan it can venture in the
search space, which subplan replacement methods are not.
All the above methods can be seen as exploring a neighbor-
hood around the current plan in the space of valid plans. Thus,
iterating them, stepping from one better plan to the next, is a
form of local search, similar to Large Neighborhood Search
(LNS) [Shaw, 1998].

Westerberg and Levine [2001] applied a genetic algorithm
to optimize plans. In difference to other approaches described
above, this requires as input a collection of plans, to form
the initial population, and can produce invalid as well as
valid new plans. Their implementation is limited to 1-point
crossover and 1-point mutation operators, suggesting it would
not be able to find plan reorderings or eliminate redundant
subplans of more than one action.

6 Approaches to Optimize Orderings and
Linearizations

Even when a (solution) plan has been found that is accept-
able regarding its solution costs or more precisely regarding
the exact actions that are within the plan, depending on the
application at hand it might still be important in which order
those actions are executed or more specifically at which time
step each action should be scheduled — examples are to con-
vey instructions to human users in a sequence that are reason-
able to them [Bercher er al., 2014] or to obtain flexible plans
with a higher chance of successful continuation, even in case
of execution errors [Muise et al., 2011]. In this section, we
detail the approaches introduced to optimize the flexibility of
partially ordered plans, in many cases causing a measurable
increase in the number of linearizations a plan can represent.
To maximize the flexibility of a plan, a common approach
is to minimize the number of ordering constraints in the re-
spective PO or POCL plan while maintaining validity — ev-
ery linearization must still be a sequential plan that achieves
the goal from the initial state. Due to the combinatorics in-
volved, a proxy for maximizing the number of linearizations
is typically employed: minimizing the ordering constraints
in the transitive closure of such a plan. Muise er al. [2016]
demonstrated a strong correlation between this optimization
criterion and the linearizations a POCL plan can represent.
One early work for minimizing the ordering constraints of
a PO plan is due to Kambhampati and Kedar [1994]. They
introduce a polynomial algorithm that converts a sequential
plan into a partially ordered one by maintaining constraints
between actions a; and a; from the total order for only one of
three reasons: (/) a; is the earliest achiever of a precondition
of a; that is unthreatened (i.e., no action between a; and a;
in the sequential plan deletes the fact); (2) a; deletes a fact
that a; adds for another action ordered after a;; or (3) a;
deletes a fact that is a precondition of a;. The algorithm is
extremely efficient, and produces a deordering of the input
plan. It was shown to theoretically not be minimal, let alone

a minimum ordering [Bickstrom, 1998], but empirically it
finds a minimum deordering among all POCL plans for the
vast majority of existing benchmarks [Muise et al., 2016].

When it comes to finding an optimal deordering or reorder-
ing of plans, research has historically turned to combinato-
rial optimization. In particular, MaxSAT [Muise et al., 2016;
Waters et al., 2020], MIP [Do and Kambhampati, 2003;
Say et al., 2016], and CSP [Waters et al., 2018]. Most of these
models share common high-level constraints to capture valid
POCL plans: (i) Every precondition of an action needs a sup-
porter. (ii) Any action that might delete (or threaten) a sup-
ported precondition must be ordered before the supporter or
after the action that requires the fact. (iii) The ordering con-
straints included in the computed plan are transitively closed.

Further, while not every one of the above works presents a
version for deordering, the encodings that are used for com-
puting optimal reorderings are easily extended to accomplish
this. For any pair of actions a; and a; in the input plan such
that a; is ordered before a;, we add a constraint that forbids
a; being ordered before a;. Note that this requires the transi-
tive closure of ordering constraints to be included.

The MaxSAT encodings of Muise et al. [2016] jointly op-
timize for a reordering (optionally a deordering) and the to-
tal cost of actions included in the computed plan. This is
achieved by assigning a cost of including an action to out-
weigh the cost of all possible ordering constraints (thus op-
timizing total action cost before considering ordering con-
straints). The MIP model of Say et al. [2016] encodes things
similarly but achieves an improved performance through a
different solving technology.

The MIP model of Do and Kambhampati [2003] shares
many similarities, but also includes further modeling aspects
to optimize temporal aspects of a plan: the input is a se-
quence of actions with specific time points and there are ac-
tion durations specified. Further optimization metrics (e.g.,
total makespan) are considered as well for this work.

Finally, the CSP and MaxSAT models of Waters et al.
[2018; 2020] optimize not only the ordering constraints of
the input plans, but relax the action selection as well through
debinding [Waters et al., 2018] or reinstantiation [Waters et
al., 2020]. Debinding refers to relaxing the object parameters
used for actions (e.g., turning stack(D,C) into stack(D,?b2) so
that the plan effectively works for any object ?b, of the right
type), while reinstantiation allows for a change in those pa-
rameters to a new object. These extensions to the general task
of relaxing the ordering constraint can be seen as a form of ac-
tion optimization that allows for improved flexibility. Actions
are not removed (and so total plan cost remains), but actions
are replaced in order to allow for fewer ordering constraints.

7 Conclusion

Plan optimization is of practical importance because plan
quality is often a crucial concern, measures of quality can be
many and diverse, and it is often significantly easier to gen-
erate any valid plan without striving for optimality. In this
paper, we provided a comprehensive overview of the rich va-
riety of techniques that exist for plan optimization. There are
some interesting takeaways from the collected works: First,



while theory shows that many plan optimization problems are
NP-hard, several studies have found that simple/greedy (and
tractable) plan optimization approaches empirically perform
very well, compared to the optimal/combinatorial solutions
[Balyo ef al., 2014; Muise et al., 2016]. Hence, unpacking
the empirical difficulty of optimizing certain plans is an open
question: Are there plans that are simultaneously highly sub-
optimal and hard to optimize? And are there domains and
problems for which current non-optimal planners will gener-
ate such plans? Second, there are synergies between differ-
ent optimization goals. For instance, reducing orderings, or
finding plan reorderings, can lead to greater opportunities for
replacing subplans, thus reducing plan cost; replacing actions
can remove threats and thus allow greater deordering; and, of
course different plan optimization methods, which have dif-
ferent neighborhoods in the space of plans can be interleaved.
The practical impacts of such combinations and their theoreti-
cal limitations are largely unexplored. Also, on the theoretical
front, the complexity and potential of block decomposition in
deordering plans are open questions.

Finally, complementary to plan optimization is lower
bounding, i.e., computing bounds on how much further
a plan can be optimized The combination of incremental
lower bounding [Haslum, 2012; Seipp and Helmert, 2013;
Davies et al., 2015] and incremental plan optimization tech-
niques may provide a powerful way to control the optimality
gap in applications of planning. Verifying the optimality of a
plan is equivalent to proving unsolvable a bounded planning
problem with a bound € less than the plan’s cost (where the
required value of € depends on the range of values of the plan
cost metric, e.g., it is 1 if costs are integral). Proving, effi-
ciently, the unsolvability of planning problems is a question
that has only relatively recently gained interest in the field
[Muise and Lipovetzky, 2016].
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