A Survey on Plan Optimization

Pascal Bercher' and Patrik Haslum' and Christian Muise?

'The Australian National University
2Queen’s University

August 9, 2024

Australian
=, Naow @ Queens

Sy University

Introduction
[1o}

Introduction

g Australian
—«SSw National

&=2 University Pascal Bercher and Patrik Haslum and Christian Muise 1.18

Introduction

O@0000

Motivation

Plan optimization in a nutshell:
@ Input: A plan and the underlying model, but no search space
@ Output: “A better version” of said plan (details: see later)

Australian
— @SS National

3 University pascal Bercher and Patrik Haslum and Christian Muise 218

Motivation

Plan optimization in a nutshell:
@ Input: A plan and the underlying model, but no search space
@ Output: “A better version” of said plan (details: see later)

Why doing plan optimization?
@ Optimality or at least non-redundancy is often important, e.g.,
® clearly, we want to save costs
® reduce execution time (exploiting parallelism)
® be more flexible during execution
[]

in plan explanation, what if somebody asks why action X is
required, but it's redundant in the plan?

Australian

- @} National

University ~ Pascal Bercher and Patrik Haslum and Christian Muise 218

Motivation

Conclusion

Plan optimization in a nutshell:

@ Input: A plan and the underlying model, but no search space

@ Output: “A better version” of said plan (details: see later)

Why doing plan optimization?
@ Optimality or at least non-redundancy is often important, e.g.,

clearly, we want to save costs

reduce execution time (exploiting parallelism)

be more flexible during execution

in plan explanation, what if somebody asks why action X is
required, but it's redundant in the plan?

@ But finding an optimal plan is much harder than finding any

@ We might also not be in control of the plans we are given

| | Australian

>y]
— &S, National
=2

University ~ Pascal Bercher and Patrik Haslum and Christian Muise 218

Introduction
©000

Considered Types of Planning Problems

Considered Types of Planning Problems J
Australian
— &Sy National
Uﬁit\l/%nl’gity Pascal Bercher and Patrik Haslum and Christian Muise 3.18

Considered Types of Planning Problems: Classical (=non-hierarchical) Planning

We consider classical planning problems, which consist of:

A
B D

@ All existing “facts” F.

@ Aninitial state s; € 2F.

@ A set of available actions A.
@ A goal description g C F.

— Find an action sequence (i.e., a plan) that transforms s; into g.
For example, one of the available actions is:

preconditions must hold.

@ Actions change states by adding or
deleting their effects.

Australian

— eg, National
4.18

3 University Ppascal Bercher and Patrik Haslum and Christian Muise

Introduction roblem Stateme e Conclusion

Considered Types of Planning Problems: Hierarchical Task Network (HTN) Planning

In HTN Planning,
@ we do not plan for state-based facts, instead,

@ we have initial compound tasks that need to be refined
for which the model contains “methods”, the refinement rules.

@ The solution is an executable, primitive task network (refinement).

Australian
— @<= National

3 University pascal Bercher and Patrik Haslum and Christian Muise 5.18

Introduction atement nte Conclusion

Considered Types of Planning Problems: HTN Planning by Example |

makeClear(?b) clear(A)
done/ \ A | clear(D)
pre: clear(?b) one-step B D

pre: on(?b’, 7b)

/
D(empty) \
o= =aw T

(:task makeClear :parameters (?b - block)) makeClear(C):

(:method one-step makeClear(A)
:parameters (?b1 ?b2 - block) unstack(A,B)
:task (makeClear ?b1)
:precondition (and (on ?b2 ?b1)) putdown(A)
:ordered-tasks (and (makeClear ?b2) makeClear(B)
(unstack ?b2 ?b1) unstack(B,C)
?
7 Qggggg?n (putdown ?b2))) putdown(B)
Uanel’Slty Pascal Bercher and Patrik Haslum and Christian Muise 6.18

Problem Statement
°

Problem Statem

g Australian
—«SSw National

&=2 University Pascal Bercher and Patrik Haslum and Christian Muise 7.18

Introduction Problem Statement ain Content
000000

Input/Output Plans

@ Input in most cases: action sequences!

(Simply because that’'s what most algorithms produce.)
@ Output: partially ordered ones, mostly.

(See next slides.)

Australian
— @<= National

& =3 University Pascal Bercher and Patrik Haslum and Christian Muise 8.18

Problem Statement
[ele] lelele}

Input/Output Plans: Partial Order Causal Link (POCL) Plans

POCL plans are used as basis for several optimization techniques!
@ They contain a set of ordering constraints
@ They contain a set of causal links to ensure executability

Important properties:
@ In POCL plans, every linearization is executable
@ There are some PO plans (where every linearization is
executable), for which no corresponding POCL plan exists with
the same ordering constraints/linearizations (cf. paper).

@ They allow for parallelism; the makespan here is 4

Australian
— National
M University Pascal Bercher and Patrik Haslum and Christian Muise 9.18

Problem Statement ain Content
00000

Input/Output Plans: Block-decomposed PO (BDPO) Plans
|J—| Another generalization of action sequences are BDPO plans:

@ Here, we define ordering constraints between blocks
@ Every linearization of the blocks is executable

F

@ Blocks can contain blocks, so the definition is recursive
@ BDPO plans can express more linearizations than POCL plans:
¢ In Blocks World with one gripper, there can’t be parallelism
® VYet, here we have a partial order — but no parallelism
® (In the last plan, there were two grippers (G1 and G2) available,
hence the partial order.)

Important properties:

Australian

— &@% National

University pascal Bercher and Patrik Haslum and Christian Muise 10.18

Introduction Problem Statement Content nclusion
®0

Problem Statement: Optimization Tasks

One usually optimizes one of two things:

@ Minimize number of actions or action costs
(Different notions of (sub)optimality exist)
@ Optimize Orderings:
® Maximize number of linearizations,

usually done by minimizing ordering constraints
® Minimize makespan (also done by removing orderings)

Australian
— M National

University pascal Bercher and Patrik Haslum and Christian Muise 11.18

Introduction Problem Statement Content
00000@

Problem Statement: What changes are allowed/done?

For optimizing ordering constraints, one can:
@ just delete ordering constraints, called deordering, or
@ change ordering constraints, called reordering
— Sometimes we can only remove orderings after removing actions.

Australian
— @<= National

& 3 University Pascal Bercher and Patrik Haslum and Christian Muise 12.18

Introduction Problem Statement ain Content
oe

Problem Statement: What changes are allowed/done?

For optimizing ordering constraints, one can:
@ just delete ordering constraints, called deordering, or
@ change ordering constraints, called reordering
— Sometimes we can only remove orderings after removing actions.

For the minimization of plans (actions),
@ we can just remove actions, or
@ we can replace actions/subplans.

— Sometimes, we can only remove actions after reordering!

2| Australian
— &@:Z% National

= University pascal Bercher and Patrik Haslum and Christian Muise 12.18

Main Content

E Australian
—«SSw National

&=2 University Pascal Bercher and Patrik Haslum and Christian Muise 13.18

Main Content
0®00

Main Content

o Related topics, e.g.,
® is branch and bound a solution to our problem?
(we could take the length of the input plan as first bound!)
® plan repair often does (is!) almost the same!

Australian
— @SS National

& 23 University Pascal Bercher and Patrik Haslum and Christian Muise 14.18

Main Content
0®00

Main Content

o Related topics, e.g.,
® is branch and bound a solution to our problem?
(we could take the length of the input plan as first bound!)
® plan repair often does (is!) almost the same!
@ Complexity results for all these questions, e.g.,
® is there a subplan that works?
® is there a de-/reordering with k or less ordering constraints?
® is there a de-/reordering with makespan k?
— “perfect justification” is NP-complete (and many more)

Australian

- @} National

= University pascal Bercher and Patrik Haslum and Christian Muise 14.18

Main Content Conclusion
0®00 00

Main Content

o Related topics, e.g.,
® is branch and bound a solution to our problem?
(we could take the length of the input plan as first bound!)
® plan repair often does (is!) almost the same!
@ Complexity results for all these questions, e.g.,
® is there a subplan that works?
® is there a de-/reordering with k or less ordering constraints?
® is there a de-/reordering with makespan k?
— “perfect justification” is NP-complete (and many more)
@ Optimization techniques for all these questions, i.e.,
® for optimizing plans (actions) and
® for linearizations/ordering constraints.

Australian

- @ National

University Pascal Bercher and Patrik Haslum and Christian Muise 14.18

Main Content Conclusion
0®00 00

Main Content

o Related topics, e.g.,
® is branch and bound a solution to our problem?
(we could take the length of the input plan as first bound!)
® plan repair often does (is!) almost the same!
@ Complexity results for all these questions, e.g.,
® is there a subplan that works?
® is there a de-/reordering with k or less ordering constraints?
® is there a de-/reordering with makespan k?
— “perfect justification” is NP-complete (and many more)
@ Optimization techniques for all these questions, i.e.,
® for optimizing plans (actions) and
® for linearizations/ordering constraints.

Reminder: all this both for classical and hierarchical planning

Australian

»

— g\\@j% National

University Pascal Bercher and Patrik Haslum and Christian Muise 14.18

Main Content
0000

Techniques for Removing/Replacing Actions

An incomplete list sneak-peek:
@ Fink and Yang [1992], authors of one of the landmark papers in
plan optimization, propose various degrees of redundancy (and
algorithms), some in P.

Australian
— @<= National

3 University pascal Bercher and Patrik Haslum and Christian Muise 15.18

Main Content
0000

Techniques for Removing/Replacing Actions

An incomplete list sneak-peek:

@ Fink and Yang [1992], authors of one of the landmark papers in
plan optimization, propose various degrees of redundancy (and
algorithms), some in P.

@ Removing redundant actions:

® Encodings exist via MaxSAT, weighted MaxSAT, and planning.
Especially the former build on POCL plans.
¢ Also "algorithms” exist (by several groups).
® For HTN planning, one approach bases on grammar parsing.
@ Replacing subplans:
® Some approaches again base on SAT and planning; the latter
uses BDPO plans.

Australian

— k@} National
& 15.18

=< University Pascal Bercher and Patrik Haslum and Christian Muise

Main Content
0000

Techniques for Removing/Replacing Actions

An incomplete list sneak-peek:

@ Fink and Yang [1992], authors of one of the landmark papers in
plan optimization, propose various degrees of redundancy (and
algorithms), some in P.

@ Removing redundant actions:

® Encodings exist via MaxSAT, weighted MaxSAT, and planning.
Especially the former build on POCL plans.
¢ Also "algorithms” exist (by several groups).
® For HTN planning, one approach bases on grammar parsing.
@ Replacing subplans:
® Some approaches again base on SAT and planning; the latter
uses BDPO plans.

Again, there are plenty more!

Australian

»

[+]
7&@% National 15.18

University Pascal Bercher and Patrik Haslum and Christian Muise

Main Content
oooe

Techniques for Improving Orderings/Linearizations

Some key messages:

@ Again, encodings exist into MaxSAT, MIP, and CSPs.
@ Some solve:

the NP-complete perfect justification,

the weaker polytime justifications, and

some use P-approximations to the NP-complete problem.
The P-approximation was extremely strong in the tested
benchmark domains, finding optimal results in most cases.

Australian

— &@% National

= University pascal Bercher and Patrik Haslum and Christian Muise 16.18

Conclusion
[1]

Conclusion

E Australian
—«SSw National

&=2 University Pascal Bercher and Patrik Haslum and Christian Muise 17.18

Conclusion
oe

High-level summary:
@ We looked into complexity results and practical techniques
@ Both for optimizing actions and orderings
@ Both for classical and hierarchical planning (but mostly classical)

Look into the paper! :)

And see me at the poster.

~ Thank you! :)

| Australian
— oSS National
M University ~Pascal Bercher and Patrik Haslum and Christian Muise 18.18

	Introduction
	Considered Types of Planning Problems

	Problem Statement
	Input/Output Plans
	Problem Statement

	Main Content
	Conclusion

