
A Survey on Plan Optimization

Pascal Bercher1 and Patrik Haslum1 and Christian Muise2

1The Australian National University
2Queen’s University

August 9, 2024

Introduction Problem Statement Main Content Conclusion

Introduction

Pascal Bercher and Patrik Haslum and Christian Muise 1.18

Introduction Problem Statement Main Content Conclusion

Motivation

Plan optimization in a nutshell:

Input: A plan and the underlying model, but no search space

Output: “A better version” of said plan (details: see later)

Why doing plan optimization?
Optimality or at least non-redundancy is often important, e.g.,

• clearly, we want to save costs
• reduce execution time (exploiting parallelism)
• be more flexible during execution
• in plan explanation, what if somebody asks why action X is

required, but it’s redundant in the plan?

But finding an optimal plan is much harder than finding any

We might also not be in control of the plans we are given

Pascal Bercher and Patrik Haslum and Christian Muise 2.18

Introduction Problem Statement Main Content Conclusion

Motivation

Plan optimization in a nutshell:

Input: A plan and the underlying model, but no search space

Output: “A better version” of said plan (details: see later)

Why doing plan optimization?
Optimality or at least non-redundancy is often important, e.g.,

• clearly, we want to save costs
• reduce execution time (exploiting parallelism)
• be more flexible during execution
• in plan explanation, what if somebody asks why action X is

required, but it’s redundant in the plan?

But finding an optimal plan is much harder than finding any

We might also not be in control of the plans we are given

Pascal Bercher and Patrik Haslum and Christian Muise 2.18

Introduction Problem Statement Main Content Conclusion

Motivation

Plan optimization in a nutshell:

Input: A plan and the underlying model, but no search space

Output: “A better version” of said plan (details: see later)

Why doing plan optimization?
Optimality or at least non-redundancy is often important, e.g.,

• clearly, we want to save costs
• reduce execution time (exploiting parallelism)
• be more flexible during execution
• in plan explanation, what if somebody asks why action X is

required, but it’s redundant in the plan?

But finding an optimal plan is much harder than finding any

We might also not be in control of the plans we are given

Pascal Bercher and Patrik Haslum and Christian Muise 2.18

Introduction Problem Statement Main Content Conclusion

Considered Types of Planning Problems

Considered Types of Planning Problems

Pascal Bercher and Patrik Haslum and Christian Muise 3.18

Introduction Problem Statement Main Content Conclusion

Considered Types of Planning Problems: Classical (=non-hierarchical) Planning

We consider classical planning problems, which consist of:

All existing “facts” F.

An initial state sI ∈ 2F .

A set of available actions A.

A goal description g ⊆ F .

→ Find an action sequence (i.e., a plan) that transforms sI into g.

For example, one of the available actions is:

unstack
(?a,?b)

gripperFree

clear(?a)

on(?a,?b)

¬gripperFree
holding(?a)
¬on(?a,?b)
¬clear(?a)
clear(?b)

Pascal Bercher and Patrik Haslum and Christian Muise 4.18

A
B
C E

D

For an action to be executable, all
preconditions must hold.

Actions change states by adding or
deleting their effects.

Introduction Problem Statement Main Content Conclusion

Considered Types of Planning Problems: Hierarchical Task Network (HTN) Planning

In HTN Planning,

we do not plan for state-based facts, instead,

we have initial compound tasks that need to be refined
for which the model contains “methods”, the refinement rules.

The solution is an executable, primitive task network (refinement).

Pascal Bercher and Patrik Haslum and Christian Muise 5.18

Introduction Problem Statement Main Content Conclusion

Considered Types of Planning Problems: HTN Planning by Example

makeClear(?b)

(empty)

done
pre: clear(?b)

makeClear(?b′) unstack(?b′, ?b) putdown(?b′)

one-step
pre: on(?b′, ?b)

(: task makeClear :parameters (?b − block))

(:method one−step
:parameters (?b1 ?b2 − block)
: task (makeClear ?b1)
:precondit ion (and (on ?b2 ?b1))
:ordered−tasks (and (makeClear ?b2)

(unstack ?b2 ?b1)
(putdown ?b2)))

Pascal Bercher and Patrik Haslum and Christian Muise 6.18

A
B
C E

D

clear(A)

clear(D)

makeClear(C):

makeClear(A)
unstack(A,B)
putdown(A)
makeClear(B)
unstack(B,C)
putdown(B)

Introduction Problem Statement Main Content Conclusion

Problem Statement

Pascal Bercher and Patrik Haslum and Christian Muise 7.18

Introduction Problem Statement Main Content Conclusion

Input/Output Plans

Input in most cases: action sequences!
(Simply because that’s what most algorithms produce.)

Output: partially ordered ones, mostly.
(See next slides.)

Pascal Bercher and Patrik Haslum and Christian Muise 8.18

Introduction Problem Statement Main Content Conclusion

Input/Output Plans: Partial Order Causal Link (POCL) Plans

POCL plans are used as basis for several optimization techniques!

They contain a set of ordering constraints

They contain a set of causal links to ensure executability
gF(G1)

gF(G2)

onT(B)

onT(C)

onT(D)

clr(A)

clr(B)

clr(D)

on(A,C)

unstack
(G2,A,C)

gF(G2)

clr(A)

on(A,C)

¬gF(G2)
gH(G2,A)
¬on(A,C)
¬clr(A)
clr(C)

putdown
(G2,A)

gH(G2,A)

gF(G2)

¬gH(G2,A)

onT(A)

clr(A)

pickup
(G1,D)

gF(G1)

onT(D)

clr(D)

¬gF(G1)

gH(G1,D)

¬clr(D)

¬onT(D)

stack
(G1,D,C)

gH(G1,D)

clr(C)

gF(G1)
¬gH(G1,D)
on(D,C)
clr(D)
¬clr(C)

pickup
(G2,A)

gF(G2)

onT(A)

clr(A)

¬gF(G2)

gH(G2,A)

¬clr(A)
¬onT(A)

stack
(G2,A,B)

gH(G2,A)

clr(B)

gF(G2)
¬gH(G2,A)
on(A,B)
clr(A)
¬clr(B)

on(A,B)

on(D,C)

Important properties:

In POCL plans, every linearization is executable

There are some PO plans (where every linearization is
executable), for which no corresponding POCL plan exists with
the same ordering constraints/linearizations (cf. paper).

They allow for parallelism; the makespan here is 4

Pascal Bercher and Patrik Haslum and Christian Muise 9.18

Introduction Problem Statement Main Content Conclusion

Input/Output Plans: Block-decomposed PO (BDPO) Plans

Another generalization of action sequences are BDPO plans:

Here, we define ordering constraints between blocks

Every linearization of the blocks is executable
gF

onT(B)

onT(C)

onT(D)

clr(A)

clr(B)

clr(D)

on(A,C)

unstack
(A,C)

gF

clr(A)

on(A,C)

¬gF
gH(A)
¬on(A,C)
¬clr(A)
clr(C)

putdown
(A)

gH(A)

gF

¬gH(A)

onT(A)

clr(A)

pickup
(D)

gF

onT(D)

clr(D)

¬gF
gH(D)

¬clr(D)

¬onT(D)

stack
(D,C)

gH(D)

clr(C)

gF
¬gH(D)
on(D,C)
clr(D)
¬clr(C)

pickup
(A)

gF

onT(A)

clr(A)

¬gF
gH(A)

¬clr(A)
¬onT(A)

stack
(A,B)

gH(A)

clr(B)

gF
¬gH(A)
on(A,B)
clr(A)
¬clr(B)

on(A,B)

on(D,C)

<

<

<

<

<

Important properties:

Blocks can contain blocks, so the definition is recursive
BDPO plans can express more linearizations than POCL plans:

• In Blocks World with one gripper, there can’t be parallelism
• Yet, here we have a partial order – but no parallelism
• (In the last plan, there were two grippers (G1 and G2) available,

hence the partial order.)

Pascal Bercher and Patrik Haslum and Christian Muise 10.18

A

C DB

A D
B C

DB C A

Introduction Problem Statement Main Content Conclusion

Problem Statement: Optimization Tasks

One usually optimizes one of two things:

Minimize number of actions or action costs
(Different notions of (sub)optimality exist)
Optimize Orderings:

• Maximize number of linearizations,
usually done by minimizing ordering constraints

• Minimize makespan (also done by removing orderings)

Pascal Bercher and Patrik Haslum and Christian Muise 11.18

Introduction Problem Statement Main Content Conclusion

Problem Statement: What changes are allowed/done?

For optimizing ordering constraints, one can:

just delete ordering constraints, called deordering, or

change ordering constraints, called reordering

→ Sometimes we can only remove orderings after removing actions.

For the minimization of plans (actions),

we can just remove actions, or

we can replace actions/subplans.

→ Sometimes, we can only remove actions after reordering!

Pascal Bercher and Patrik Haslum and Christian Muise 12.18

Introduction Problem Statement Main Content Conclusion

Problem Statement: What changes are allowed/done?

For optimizing ordering constraints, one can:

just delete ordering constraints, called deordering, or

change ordering constraints, called reordering

→ Sometimes we can only remove orderings after removing actions.

For the minimization of plans (actions),

we can just remove actions, or

we can replace actions/subplans.

→ Sometimes, we can only remove actions after reordering!

Pascal Bercher and Patrik Haslum and Christian Muise 12.18

Introduction Problem Statement Main Content Conclusion

Main Content

Pascal Bercher and Patrik Haslum and Christian Muise 13.18

Introduction Problem Statement Main Content Conclusion

Main Content

Related topics, e.g.,
• is branch and bound a solution to our problem?

(we could take the length of the input plan as first bound!)
• plan repair often does (is!) almost the same!

Complexity results for all these questions, e.g.,
• is there a subplan that works?
• is there a de-/reordering with k or less ordering constraints?
• is there a de-/reordering with makespan k?
→ “perfect justification” is NP-complete (and many more)

Optimization techniques for all these questions, i.e.,
• for optimizing plans (actions) and
• for linearizations/ordering constraints.

Reminder: all this both for classical and hierarchical planning

Pascal Bercher and Patrik Haslum and Christian Muise 14.18

Introduction Problem Statement Main Content Conclusion

Main Content

Related topics, e.g.,
• is branch and bound a solution to our problem?

(we could take the length of the input plan as first bound!)
• plan repair often does (is!) almost the same!

Complexity results for all these questions, e.g.,
• is there a subplan that works?
• is there a de-/reordering with k or less ordering constraints?
• is there a de-/reordering with makespan k?
→ “perfect justification” is NP-complete (and many more)

Optimization techniques for all these questions, i.e.,
• for optimizing plans (actions) and
• for linearizations/ordering constraints.

Reminder: all this both for classical and hierarchical planning

Pascal Bercher and Patrik Haslum and Christian Muise 14.18

Introduction Problem Statement Main Content Conclusion

Main Content

Related topics, e.g.,
• is branch and bound a solution to our problem?

(we could take the length of the input plan as first bound!)
• plan repair often does (is!) almost the same!

Complexity results for all these questions, e.g.,
• is there a subplan that works?
• is there a de-/reordering with k or less ordering constraints?
• is there a de-/reordering with makespan k?
→ “perfect justification” is NP-complete (and many more)

Optimization techniques for all these questions, i.e.,
• for optimizing plans (actions) and
• for linearizations/ordering constraints.

Reminder: all this both for classical and hierarchical planning

Pascal Bercher and Patrik Haslum and Christian Muise 14.18

Introduction Problem Statement Main Content Conclusion

Main Content

Related topics, e.g.,
• is branch and bound a solution to our problem?

(we could take the length of the input plan as first bound!)
• plan repair often does (is!) almost the same!

Complexity results for all these questions, e.g.,
• is there a subplan that works?
• is there a de-/reordering with k or less ordering constraints?
• is there a de-/reordering with makespan k?
→ “perfect justification” is NP-complete (and many more)

Optimization techniques for all these questions, i.e.,
• for optimizing plans (actions) and
• for linearizations/ordering constraints.

Reminder: all this both for classical and hierarchical planning

Pascal Bercher and Patrik Haslum and Christian Muise 14.18

Introduction Problem Statement Main Content Conclusion

Techniques for Removing/Replacing Actions

An incomplete list sneak-peek:

Fink and Yang [1992], authors of one of the landmark papers in
plan optimization, propose various degrees of redundancy (and
algorithms), some in P.

Removing redundant actions:
• Encodings exist via MaxSAT, weighted MaxSAT, and planning.

Especially the former build on POCL plans.
• Also ”algorithms” exist (by several groups).
• For HTN planning, one approach bases on grammar parsing.

Replacing subplans:
• Some approaches again base on SAT and planning; the latter

uses BDPO plans.

Again, there are plenty more!

Pascal Bercher and Patrik Haslum and Christian Muise 15.18

Introduction Problem Statement Main Content Conclusion

Techniques for Removing/Replacing Actions

An incomplete list sneak-peek:

Fink and Yang [1992], authors of one of the landmark papers in
plan optimization, propose various degrees of redundancy (and
algorithms), some in P.
Removing redundant actions:

• Encodings exist via MaxSAT, weighted MaxSAT, and planning.
Especially the former build on POCL plans.

• Also ”algorithms” exist (by several groups).
• For HTN planning, one approach bases on grammar parsing.

Replacing subplans:
• Some approaches again base on SAT and planning; the latter

uses BDPO plans.

Again, there are plenty more!

Pascal Bercher and Patrik Haslum and Christian Muise 15.18

Introduction Problem Statement Main Content Conclusion

Techniques for Removing/Replacing Actions

An incomplete list sneak-peek:

Fink and Yang [1992], authors of one of the landmark papers in
plan optimization, propose various degrees of redundancy (and
algorithms), some in P.
Removing redundant actions:

• Encodings exist via MaxSAT, weighted MaxSAT, and planning.
Especially the former build on POCL plans.

• Also ”algorithms” exist (by several groups).
• For HTN planning, one approach bases on grammar parsing.

Replacing subplans:
• Some approaches again base on SAT and planning; the latter

uses BDPO plans.

Again, there are plenty more!

Pascal Bercher and Patrik Haslum and Christian Muise 15.18

Introduction Problem Statement Main Content Conclusion

Techniques for Improving Orderings/Linearizations

Some key messages:

Again, encodings exist into MaxSAT, MIP, and CSPs.
Some solve:

• the NP-complete perfect justification,
• the weaker polytime justifications, and
• some use P-approximations to the NP-complete problem.
• The P-approximation was extremely strong in the tested

benchmark domains, finding optimal results in most cases.

Pascal Bercher and Patrik Haslum and Christian Muise 16.18

Introduction Problem Statement Main Content Conclusion

Conclusion

Pascal Bercher and Patrik Haslum and Christian Muise 17.18

Introduction Problem Statement Main Content Conclusion

High-level summary:

We looked into complexity results and practical techniques

Both for optimizing actions and orderings

Both for classical and hierarchical planning (but mostly classical)

Look into the paper! :)

And see me at the poster.

⇝ Thank you! :)

Pascal Bercher and Patrik Haslum and Christian Muise 18.18

	Introduction
	Considered Types of Planning Problems

	Problem Statement
	Input/Output Plans
	Problem Statement

	Main Content
	Conclusion

