Modeling Assistance for Hierarchical Planning: An Approach for Correcting Hierarchical Domains with Missing Actions

Songtuan Lin¹, Daniel Höller², Pascal Bercher¹

¹School of Computing, The Australian National University ²Computer Science Department, Saarland University

June 2024

Australian National University

Hardness of modeling planning domains is a major obstacle for deploying planning techniques broadly.

- The demand of tools for modeling support arises.
 - No such tools exist for *hierarchical* planning.

Objective

We want to develop an approach for correcting potential errors in a hierarchical domain.

Introduction $\circ \bullet$		
Background		

A high level abstract (compound) task is accomplished by decomposing it into sub-tasks and completeing them.

 c_I

• Start with one compound task c_I .

Introduction $\circ \bullet$		
Background		

- Start with one compound task c_I .
- Keep decomposing compound tasks.

Introduction $\circ \bullet$		
Background		

- Start with one compound task c_I .
- Keep decomposing compound tasks.

Introduction $\circ \bullet$		
Background		

- Start with one compound task c_I .
- Keep decomposing compound tasks.

- Start with one compound task c_I .
- Keep decomposing compound tasks.

- Start with one compound task c_I .
- Keep decomposing compound tasks.

Introduction $\circ \bullet$		
Background		

- Start with one compound task c_I .
- Keep decomposing compound tasks.

- Start with one compound task c_I .
- Keep decomposing compound tasks.

Introduction $\circ \bullet$		
Background		

- Start with one compound task c_I .
- Keep decomposing compound tasks.
- Stop until all tasks are primitive.

Problem Definition

- Input: A hierarchical planning problem and a plan.
 - The plan is supposed to be a solution but is actually not due to the errors.
- **Output**: Changes (corrections) to the domain which turn the plan into a solution.
- A planning problem consists of a domain, an initial compound task, and an initial state.
 - The domain specifies the compound and primitive tasks and the methods.
 - The initial compound task specifies which abstract task needs to be solved.

	Formulation $O \bullet$		
Limitations			

• We find such corrections by compiling this problem into another hierarchical planning problem.

Limitations

- Corrections are restricted to inserting missing actions to methods.
- The approach only works for total order hierarchical planning in the grounded setting.

	Approach ●	
Encoding		

For each action in the given plan and each location in methods to which actions can be inserted:

	$_{\bullet}^{\rm Approach}$	
Encoding		

For each action in the given plan and each location in methods to which actions can be inserted:

$$\left[\begin{array}{c} \hline 0 \\ \hline 0 \\ \hline \end{array}\right] \rightarrow 0 \rightarrow \left[\begin{array}{c} \hline 0 \\ \hline \end{array}\right] \rightarrow 0 \rightarrow \left[\begin{array}{c} \hline 0 \\ \hline \end{array}\right]$$

	Approach ●	
Encoding		

For each action in the given plan and each location in methods to which actions can be inserted:

	Approach ●	
Encoding		

For each action in the given plan and each location in methods to which actions can be inserted:

For each action in a method from a (grounded) domain in IPC 2020 on Hierarchical Planning:

• We let it have 30% chance of being discarded.

	Total	Solved	Plan	Plan Length	
	rotai	borrea	Min	Max	
Hiking	20	0	26	45	
Transport	20	0	16	50	
Entertainment	10	10	24	50	
Rover	20	13	16	49	
Monroe (FO)	20	9	3	48	
Depots	20	4	15	50	
Woodworking	9	7	4	24	
Satellite	13	10	12	50	
Blocksworld	5	1	21	40	
Monroe (PO)	20	5	11	48	
Childsnack	10	3	50	50	
	167	62			

- We developed an approach for correcting potential errors in a hierarchical planning domain.
 - It works for grounded and totally ordered domains.
 - It can only address errors due to missing actions in methods.

Future Work

We would like to improve the approach by addressing the mentioned limitations.