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Objective

We studied the computational complexity of several problems centered at the
bounded plan existence problem.

1. The plan verification problem.

2. The bounded plan existence problem.

3. The (bounded) plan optimality verification problem.
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Problems and their relations
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Is there a decomposition hierarchy?
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Is there a decomposition hierarchy?

any solution that has less actions?
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Results

Plan Verification k-length Plan Existence Plan Optimality Verification Bounded Plan Optimality Verification
k in binary k in unary plan given only plan length given
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Construction

How a decomposition hierarchy simulates state transitions:


