
On the Computational Complexity of Plan Verification, (Bounded) Plan-Optimality Verification, and Bounded Plan Existence
Songtuan Lin1 Conny Olz2 Malte Helmert3 Pascal Bercher1

1School of Computing, The Australian National University, Australia
2Institute of Artificial Intelligence, Ulm University, Germany

3Department of Mathematics and Computer Science, University of Basel, Switzerland
1{songtuan.lin, pascal.bercher}@anu.edu.au 2conny.olz@uni-ulm.de 3malte.helmert@unibas.ch

Objective

We studied the computational complexity of several problems centered at the
bounded plan existence problem.

1. The plan verification problem.

2. The bounded plan existence problem.

3. The (bounded) plan optimality verification problem.

method 1:

-- compound task

-- primitive task (action)

method 2:
initial task network

method 1

method 2 p q

f

q r

¬p

r

f

z

¬q
z p

sI =
{
p
}

g =
{
p, z

}
executable linearization
(non-hierarchical part)

Problems and their relations

p q

f

q r

¬p

r

f

z

¬q
z p

sI =
{
p
}

g =
{
p, z

}

Is there a decomposition hierarchy?

plan
verification

· · ·

sI g

Is there a decomposition hierarchy?

at most k actions?

boundedplan
existence

sI g

Is there a decomposition hierarchy?

any solution that has less actions?

(bounded)plan
optim

alityverification

gu
es
sa

nd
ve

rif
ya

pl
an

co
m
pl
em

en
t

Results

Plan Verification k-length Plan Existence Plan Optimality Verification Bounded Plan Optimality Verification
k in binary k in unary plan given only plan length given

Clas
sica

l ground In P PSPACE-complete NP-complete coNP-complete coNP-complete PSPACE-complete
lifted In P NEXPTIME-complete NP-complete coNP-complete coNP-complete coNEXPTIME-complete

Hier
arch

ical
ground NP-complete NEXPTIME-complete NP-complete coNP-complete coNP-complete coNEXPTIME-complete

lifted PSPACE-hard NEXPTIME-hard PSPACE-hard PSPACE-hard PSPACE-hard coNEXPTIME-hard
In NEXPTIME In 2NEXPTIME In NEXPTIME In coNEXPTIME In coNEXPTIME In co2NEXPTIME

State(1, 0, 0, 0, 1)sI =
{
p1
}

State(v0, x2, v1, v0, v1)

State(v1, x2, x3, v0, v1)
ma1

v0 7→ 0, v1 7→ 1
x2 7→ 0, x3 7→ 0

State(0, 0, 1, 0, 1)

State(v1, x2, v1, v0, v1)

State(v1, v1, v1, v0, v1)

ma2 State(x1, x2, v1, v0, v1)

State(v1, x2, v1, v0, v1)

ma3

v0 7→ 0, v1 7→ ×
x1 7→ 1, x2 7→ 0

v0 7→ 0, v1 7→ ×
x2 7→ 0

· · · · · ·

a1
p1 p3

¬p1 State(v0, x2, v1, v0, v1)

State(v1, x2, x3, v0, v1)
ma1

a2
p1

p3

p2
State(v1, v1, v1, v0, v1)

State(v1, x2, v1, v0, v1)
ma2

a3
p3 p1

State(v1, x2, v1, v0, v1)

State(x1, x2, v1, v0, v1)
ma3

Construction

How a decomposition hierarchy simulates state transitions:


