On the Computational Complexity of Plan Verification, (Bounded) Plan-Optimality Verification, and Bounded Plan Existence

Songtuan Lin¹ Conny Olz² Malte Helmert³ Pascal Bercher¹

¹The Australian National University ²Ulm University ³University of Basel

Feb 2024

Introduction ●			
Introduct	ion		

Objective

We want to study the computational complexity of several problems centered at the bounded plan existence problem.

Problems we are going to study:

- Plan Verification
- Bounded Plan Existence
- (Bounded) Plan Optimality Verification

	Background ●		
Backgroui	nd		

 Classical (non-hierarchical) planning - Find a sequence of actions (i.e., a plan) that achieves a goal

 Hierarchical planning - Keep decomposing compound tasks until a primitive action sequence is obtained Plan Verification (Complexity Ranges from P to NEXPTIME)

Plan Verification

The plan verification problem is to decide whether a plan is a solution to a planning problem.

- It is trivial for classical planning with both the grounded and lifted settings
- It is NP-complete for grounded hierarchical planning
- For lifted hierarchical planning, it is PSPACE-hard (but in NEXPTIME)

Encoding a Classical Planning Problem as a Plan Verification Problem

- For hierarchical planning with the lifted setting, plan verification is PSPACE-hard (but in NEXPTIME)
- Decomposition hierarchies can simulate state transitions:

Bounded Plan Existence (Complexity Ranges from NP-complete to NEXPTIME-complete)

Bounded Plan Existence

The bounded plan existence problem is to decide whether there exists a solution to a planning problem of length up to a given bound.

- Its complexity coincides with the complexity of the plan verification problem
- We can guess and verify a plan up to length k

	Bounded Plan Existence ○●○○	

Upper Bound for the Bounded Plan Existence Problem

 $T^N_V(||\Pi||+||\pi||)+T^N_G(||k||)$

- T_V^N is a function denoting the runtime for non-deterministically verifying whether the plan π is a solution to the planning problem Π , with respect to the encoding size of Π and π .
- T_G^N is a function denoting the runtime for guessing non-deterministically a plan of length up to k, with respect to the encoding size of k.

Introduction O	Background O	Plan Verification	Bounded Plan Existence ○○●○	Optimality Verification	Summary O

Property Pretaining to the Bounded Plan Existence Problem

```
For any planning formalism, the bounded plan existence problem is in NEXPTIME if the following two conditions hold:
```

- Each action can be encoded in polynomially many bits wrt. the encoding size of the planning problem (i.e., $T_G^N(||k||)$ is exponential to ||k||).
- The plan verification problem under the respective formalism is in NP (i.e., $T_V^N(||\Pi|| + ||\pi||)$ is polynomial to $||\Pi|| + ||\pi||$ and hence exponential to $||\mathbf{k}||$).

The following results thus follow:

 The bounded plan existence problem in grounded and lifted classical planning and grounded HTN planning is in NEXPTIME.

	Bounded Plan Existence ○○○●	

Complexity Results

- The bounded plan existence problem in grounded and lifted classical planning and grounded HTN planning is in NEXPTIME.
 - It is actually PSPACE-complete for grounded classical planning and NEXPTIME-complete for lifted classical planning and grounded HTN planning.
- For lifted HTN planning, the problem is NEXPTIME-hard and in 2NEXPTIME.

If the bound is encoded in unary, the following results hold:

- The bounded plan existence problem for (both grounded and lifted) classical planning and grounded HTN planning is NP-complete.
- It is PSPACE-hard and in NEXPTIME for lifted HTN planning.

(Bounded) Optimality Verification

The (bounded) optimality verification problem is to decide whether a plan is a solution to a planning problem and its length is not far from the length of an optimal solution by a given bound.

 It is the complement of the bounded plan existence problem with the bound given in unary

			Summary ●
Summary			

	Plan Verification	k-length Plan Existence		Plan Optimality Verification	Bounded Plan Optimality Verification		
		k in binary k in unary			plan given	only plan length given	
	Classical Planning						
ground	In P	PSPACE-complete	NP-complete	coNP-complete	coNP-complete	PSPACE-complete	
lifted	In P	In P NEXPTIME-complete NP		coNP-complete	coNP-complete	coNEXPTIME-complete	
ground	NP-complete	NEXPTIME-complete	NP-complete	coNP-complete	coNP-complete	coNEXPTIME-complete	
lifted	PSPACE-hard	NEXPTIME-hard	PSPACE-hard	PSPACE-hard	PSPACE-hard	coNEXPTIME-hard	
tinted	In NEXPTIME	In 2NEXPTIME	In NEXPTIME	In coNEXPTIME	In coNEXPTIME	In co2NEXPTIME	