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Abstract

Heuristic Search is still the most successful approach to hi-
erarchical planning, both for finding any and for finding an
optimal solution. Yet, there exist only a very small handful
heuristics for HTN planning – so there is still huge poten-
tial for improvements. It is especially noteworthy that there
does not exist a single heuristic that’s tailored towards spe-
cial cases. In this work we propose the very first specialized
HTN heuristic, tailored towards totally ordered HTN prob-
lems. Our heuristic builds on an existing NP-complete and
admissible delete-and-ordering relaxation ILP heuristic but
partially incorporates ordering constraints while reducing the
number of ILP constraints. It exploits inferred preconditions
and effects of compound tasks and is also admissible. Our
current heuristic proves to be more efficient than the one we
build on, though it still performs worse than other existing
(admissible) heuristics.

Introduction
As witnessed by already having the second track on Hier-
archical Task Network (HTN) Planning in the International
Planning Competition (IPC), solving HTN problems quickly
or optimally is a prominent research field. Collectively, ten
HTN planners participated at the IPCs (not counting vari-
ous configurations per planner), and further planners exist
as well. Among all the various approaches, heuristic pro-
gression search (Höller et al. 2020; Olz and Bercher 2023b)
is still the most efficient approach, both for optimal and for
suboptimal planning – as witnessed by the most recent IPC
(Höller 2023a,b; Olz, Höller, and Bercher 2023).

The success of these search methods is tied directly to
the quality of the heuristics deployed. Despite the success of
heuristic search, only a very small number of HTN heuris-
tics exist. One of the first was a TDG-based heuristic that
estimates the minimal number of tasks that can be obtained
by decomposing the compound tasks in the current search
node (Bercher et al. 2017), one finds refinements to delete-
and ordering-relaxed problems encoded by an Integer Lin-
ear Program (ILP) (Höller, Bercher, and Behnke 2020), an-
other bases on landmarks (Höller and Bercher 2021), and
the last – but most successful – heuristic is the relaxed com-
position heuristic (Höller et al. 2018, 2020), which encodes
each search node into a classical problem allowing to deploy
classical heuristics.

All of these heuristics are designed to cope with the most
general case of an arbitrary partial order. However, there are
significantly more specialized total-order (TO) planners than
planners for general partial order planning, yet no heuristic
for this important special case exists. It is however notable
that there exists a pruning technique for total-order HTN
problems (Olz and Bercher 2023b), which further shows the
potential of this special case as its exploitation further im-
proved the total-order planner on top of which the pruning
was implemented and won the total-order HTN track of IPC
2023 (Olz, Höller, and Bercher 2023).

In this paper we propose the – to the best of our knowl-
edge – first HTN planning heuristic tailored towards totally
ordered problems. It exploits inferred preconditions and ef-
fects of compound tasks (Olz, Biundo, and Bercher 2021)
(which also serve as the basis for the TO pruning tech-
nique (Olz and Bercher 2023b; Olz, Höller, and Bercher
2023)) and deploys them in a simplified variant of the ILP-
based (NP-complete) delete- and ordering relaxation heuris-
tic (DOF) by Höller, Bercher, and Behnke (2020). Like the
original heuristic, our variant is admissible. Similarly, it can
also be computed in polytime (by relaxing the integer vari-
ables to real-valued ones), but it naturally loses some of its
informedness and hence pruning power if that is done.

We compare our new heuristic against the original ILP
heuristic and the currently best-performing RC heuristic
(Höller et al. 2020, 2018), using Add (Bonet and Geffner
2001) as the inner classical heuristic in satisficing planning
and the RC heuristic with the admissible LM-cut (Helmert
and Domshlak 2009) in optimal planning since our pro-
posed heuristic is admissible. Our results show that while the
ILP-based heuristics are not competitive with the RC(Add)
heuristic1, our new version generally outperforms DOF and
also RC(lmc) in some domains in optimal planning

We hope that future work – further improvements to our
technique – could bring our novel heuristic on par or even
beat the RC(LM-cut) heuristic as well and discuss ideas for
doing so at the end of the paper.

1When the DOF heuristic was published, it was on par with
RC(Add) but a different (smaller) set of domains was used in the
evaluation.



Theoretical Background
We start with providing the necessary definitions for total-
order HTN planning and inferred effects of compound tasks.

HTN Planning Formalism
Our heuristic for totally ordered HTN planning is grounded
in the formalisms introduced by Geier and Bercher (2011)
and Behnke, Höller, and Biundo (2018). A total-order HTN
planning domain is defined as a tuple D = (F,A,C,M),
which includes a finite set of facts F , finite sets of primitive
tasks A and compound tasks C (alternatively referred to as
abstract tasks), and decomposition methods M ⊆ C × T ∗.2
The collective set of tasks, both primitive and compound,
is denoted by T = A ∪ C. Actions or primitive tasks
a = (prec, add , del) ∈ A are characterized by their precon-
ditions prec(a) ⊆ F and their effects add(a), del(a) ⊆ F
(namely, the add and delete effects). An action a ∈ A
is applicable in a state s ∈ 2F if prec(a) ⊆ s. Upon
application, it transitions the state s to a successor state
δ(s, a) = (s \ del(a)) ∪ add(a). This concept extends to
action sequences ā = ⟨a0 . . . an⟩ with each ai ∈ A, deemed
applicable in an initial state s0 if a0 is applicable in s0 and
sequentially for each 1 ≤ i ≤ n, ai is applicable in the resul-
tant state si = δ(si−1, ai−1). Compound tasks within HTN
planning, denoted by c ∈ C, represent a higher-level ab-
straction of primitive and/or compound tasks, further spec-
ified by decomposition methods m = (c, t̄) ∈ M . These
methods decompose a compound task c within a given task
network tn1 = ⟨t̄1 c t̄2⟩ ∈ T ∗ into another task network
tn2 = ⟨t̄1 t̄ t̄2⟩, denoted as tn1 →c,m tn2, where task net-
works are finite (possibly empty) sequences of tasks. A se-
quence of methods that transforms tn into tn ′ is represented
as tn → tn ′, with tn ′ being called a refinement of tn . For a
compound task c ∈ C we also write c → tn ′ if we refer to
⟨c⟩ → tn ′. A TOHTN planning problem Π = (D, sI , cI , g)
is defined by the domain D, an initial state sI ∈ 2F , an
initial task cI ∈ C, and a goal description g ⊆ F . A so-
lution is a sequence of actions tn = ⟨a0 . . . an⟩ ∈ A∗ if
cI → tn holds, tn is applicable in sI , and it leads to a goal
state s ⊇ g.

Preconditions and Effects of Compound Tasks
In our version of the ILP heuristic we incorporate the con-
cept of inferred negative effects of compound tasks as in-
troduced by Olz, Biundo, and Bercher (2021). Compound
tasks, both according to the formalism we base upon (Geier
and Bercher 2011; Behnke, Höller, and Biundo 2018), and
as described by HDDL (Höller et al. 2020), lack direct ef-
fects and serve primarily as placeholders for task networks
to which they decompose into during the planning process.
A detailed examination of the potential decompositions of
compound tasks allows for the inference of state features re-
quired prior to any task refinement execution and the state
features that result from all possible refinements. Olz, Bi-
undo, and Bercher (2021) categorize such effects into sev-
eral types, including possible and guaranteed effects, as well

2The Kleene star notation T ∗ represents the set that includes
the empty sequence and all finite sequences of tasks from T .

as positive and negative ones, in addition to preconditions.
Our focus here is specifically on guaranteed negative effects,
hence we limit our recap to them.

The set of executability-enabling states for a compound
task c ∈ C is defined as E(c) = {s ∈ 2F | ∃ ā ∈
A∗ : c → ā and ā is applicable in s}. Moreover, the set
of states that could result from executing task c in state
s ∈ 2F is Rs(c) = {s′ ∈ 2F | ∃ ā ∈ A∗ : c →
ā, ā is applicable in s and leads to s′}.

Now, facts that are deleted after every successful execu-
tion of a refinement of a compound task c are called state-
independent negative effects (cf. Def. 4, (Olz, Biundo, and
Bercher 2021)) and are defined as follows:

eff −
∗ (c) := ∩s∈E(c)(F \∩s′∈Rs(c)s

′)

if E(c) ̸= ∅, otherwise eff −
∗ (c) := undef .

Computing these “precise” effects for compound tasks
is often too computationally expensive for the exploitation
in heuristics, as it essentially requires solving certain plan-
ning problems (Olz, Biundo, and Bercher 2021). However,
a more computationally feasible approach exists, based on
precondition-relaxation. The precondition-relaxed effects,
denoted as eff ∅−

∗ (c), are defined similarly to the original ef-
fects but rely on a precondition-relaxed version of the do-
main D′ = (F,A′, C,M), where A′ = {(∅, add , del) |
(prec, add , del) ∈ A}. This approach considers only the
presence and sequence of primitive tasks in the computation.
Procedures for computing these effects in polynomial time
have been provided by Olz, Biundo, and Bercher (2021) and
are also implemented in the PANDADealer planning system
(Olz and Bercher 2023b; Olz, Höller, and Bercher 2023),
which we employ for our evaluation.

ILP Encoding for Delete-relaxed TO-HTN
Search Nodes

Höller, Bercher, and Behnke (2020) introduced the first HTN
planning heuristic based on an ILP. They encode a delete
and ordering free (DOF) HTN planning problem, for which
the plan existence problem is NP-complete to decide. The
encoding can be divided into two parts: Constraints that en-
sure the successful execution of a sequence of actions (or a
relaxed version of it) and constraints to ensure the proper de-
composition leading to it. For the first part, Höller, Bercher,
and Behnke use the encoding by Imai and Fukunaga (2015)
(for classical planning) representing a delete-relaxed plan-
ning graph. Here, we introduce a different idea outlined fur-
ther below. The latter part we take from the work by Höller,
Bercher, and Behnke without changes, which we recap next.

Figure 1 outlines the set of ILP variables. The model by
Höller, Bercher, and Behnke for the executability of actions
needs five types of variables, but we could restrict our ver-
sion to just one (the first one; the second and third are used
to encode the decomposition). The objective function is the
same, calculating the goal distance by minimizing the num-
ber of applied primitive actions and method applications:

min
∑
a∈A

CAa +
∑
m∈M

Mm (O)



• {CAt | t ∈ T} (int) – value indicating how often a cer-
tain primitive or abstract task is in the solution.

• {Mm | m ∈ M} (int) – value indicating how often a
certain method is in the solution.

• {TNIt | t ∈ T} (bool) – flag indicating whether a certain
task is the initial task.

Figure 1: The variable set used in our ILP model. It is a
subset of the ones by Höller, Bercher, and Behnke (2020).
The first variable is renamed, the last adapted to initial task
instead of task network.

In order to simplify our constraints, we encode the cur-
rent state s and goal description as actions, known from
partial-order causal link (POCL) planning (McAllester and
Rosenblitt 1991; Bercher 2021). Specifically, we introduce
aI = (∅, s, ∅) and ag = (g, ∅, ∅). Since they need to be or-
dered before and after, respectively, all other tasks, we ad-
ditionally add a new compound task cI with one method
mI = (cI , ⟨aI , tnI , ag⟩), which replaces the current task
network of the search node.

Task Decomposition Constraints
A solution to an HTN planning problem needs to be a re-
finement of the initial task. The following two constraints by
Höller, Bercher, and Behnke (2020) encode this criterion. If
a (primitive) task is contained in the solution, then it is the
initial task and/or a method has been applied, which intro-
duced the task into the plan:
Definition 1 (mst). Let mst(t) be the multiset of methods
where the task t ∈ T is contained as a subtask. A method
m ∈ M is as often in mst(t) as t is a subtask in m.

∀t ∈ T : CAt = TNIt +
∑

m∈mst(t)

Mm (C7)

However, methods can not be applied arbitrarily, there
also needs to be a suitable abstract task for every applied
method.
Definition 2 (mdec). Let mdec(c) be the set of methods de-
composing the abstract task c ∈ C.

∀c ∈ C : CAc =
∑

m∈mdec(c)

Mm (C8)

According to Höller, Bercher, and Behnke (2020) the two
constraints are sufficient to encode the proper decomposi-
tion (more precisely, encoding a so-called decomposition
tree) leading to a sequence of tasks for acyclic problems. For
cyclic domains further constraints are necessary to handle
strongly connected components. This means that the encod-
ing without those additional constraints can also be used for
cyclic domains but the solutions can encode (shorter) plans
that can not be obtained by a proper sequence of decom-
positions. To simplify the presentation of this paper, we do
not repeat or use them since the evaluation results by Höller,
Bercher, and Behnke do not show significant improvements
by them.

Achiever Constraints
The ILP model by Höller, Bercher, and Behnke (2020) uses
the constraints by Imai and Fukunaga (2015) to simulate
a delete-relaxed planning graph. Therefore, for every time
point there exist ILP variables for every action and fact, stat-
ing whether an action is executed at that time point and the
facts being true or false. If an action is applied at some time
point, its preconditions need to be true beforehand. If a fact
needs to be true at some time point, there must be an action
adding it if it is not already true in the initial state. The ILP
solver tries to find an order of the actions so that precondi-
tions and goal facts are satisfied (under delete relaxation).
The resulting order might not meet the ordering constraints
of tasks within methods. Thus, especially in total-order do-
mains a lot of information gets lost.

Our intention was to improve the existing ILP heuristic
in terms of accuracy by incorporating (at least some of) the
ordering constraints imposed by the methods. We observed
that adding additional constraints could improve the heuris-
tic value but the additional time needed to solve the ILP
did not pay off (this was done in a pre-evaluation, not re-
ported here). To encode the planning graph, already quite
a lot of variables and constraints are necessary. Therefore,
in our proposed approach we made the model more simple
by calculating necessary information outside of the ILP up-
front. We ended up with only one (new) constraint (cl is a
large constant):

∀a ∈ A,∀f ∈ prec(a) : cl ·
∑

p∈achiever(f ,a)

CAp ≥ CAa

(C1)
This constraint ensures that for every action a ∈ A in the

plan and every of its preconditions there is an action “achiev-
ing” the precondition. So, the influence of this constraint
heavily depends on the definition of the set achiever(f , a).
A naive approach might be the following: Let a ∈ A be
a primitive task and f ∈ F a precondition, then the set
of possible achievers is achiever(f , a) = {a′ ∈ A | f ∈
add(a′)}. However, in this case the solutions of the ILP are
not very restricted. Neither are the methods’ ordering con-
straints taken into account nor does it guarantee that there
is an executable ordering of the actions (even under delete
relaxation). In the next section we present algorithms to re-
strict the set of achievers for an action a further so that it
only contains actions that appear before a according to the
method’s total order. Moreover, by exploiting the inferred
effects, we can even partially consider delete effects. Thus,
we do not present further changes to the ILP model, we only
discuss several options of how to calculate the set of possible
achievers and their impact on the set of ILP solutions.

Determining Achiever Actions
Given a TOHTN planning problem, we can determine for a
given action the set of actions that can be ordered before that
action in a possible refinement of the initial task. We will see
that we can calculate this with different levels of accuracy.

To start we define the set of reachable actions
reachable(c) = {a ∈ A | ∃ t̄ ∈ T ∗ : c → t̄ and a ∈ t̄}



Algorithm 1: Calculating Predecessor Actions
Input: A problem Π = (D, sI , cI , g)
Output: Sets of possible predecessors pred(a)∀ a ∈ A

1: pred(a) = ∅ for all a ∈ A
2: for all methods m = (c, ⟨t0, . . . , tn⟩) ∈ M do
3: for i = 1 to n do
4: for all a ∈ reachable(ti) do
5: for j = i− 1 to 0 do
6: pred(a) = pred(a) ∪ reachable(tj)

of a compound tasks c ∈ C, which are the actions reach-
able via decomposition. For primitive actions a ∈ A, we
define reachable(a) = {a}. The sets can be calculated in
polynomial time, e.g., by a depth-first search with a closed
list of already visited compound tasks to prevent infinite cy-
cles. The RC heuristic does this in a preprocessing step; it’s
a one-time computation. Given that set for every compound
task, we can compute for every primitive action the set of
actions that can possibly appear as predecessor in a refine-
ment of the initial compound task (and are thus candidates
for achiever actions) as shown in Algorithm 1.

The algorithm considers every method once. So let m =
(c, ⟨t0, . . . , tn⟩) ∈ M be a method. For each task ti (i > 1)
in the method, all of its reachable actions are considered. All
reachable actions of preceding tasks tj , j < i are added to
their sets of predecessors.

Proposition 1. Let Π = (D, sI , cI , g) be an total-order
HTN planning problem, a ∈ A, and pred(a) be computed
by Algorithm 1. Then it holds a′ ∈ pred(a) if and only if
there exists a refinement ā of cI (not necessarily executable)
so that a, a′ ∈ ā and a′ ≺ a.

Proof Sketch. We assume that all methods are reachable by
decomposition from the initial task, otherwise the uncon-
nected methods should not be considered in the algorithm.

“⇒” Let a, a′ ∈ A and a′ ∈ pred(a). Consider the
method m = (c, ⟨t0, . . . , tn⟩) ∈ M in line 2 for which
a′ was added to pred(a) in line 6. Since there there are
0 ≤ j, i ≤ n with j < i, a ∈ reachable(ti), and a′ ∈
reachable(tj) there must be a refinement of ⟨t0, . . . , tn⟩
in which a′ is ordered before a. Moreover, by assumption,
there must be a refinement of cI that contains c which can
be decomposed using m, which proves the first direction.

“⇐” Let ā be a refinement of cI and a, a′ ∈ ā two prim-
itive tasks with a′ ≺ a. If we consider the two sequences
of decompositions (more specifically, the used methods)
leading from cI to a and from cI to a′ in ā, then the
two sequences have the same prefix of methods. The suf-
fix may differ. However, the last common method m =
(c, ⟨t0, . . . , tn⟩) ∈ M must have two tasks tj ≺ ti with
a′ ∈ reachable(tj) and a ∈ reachable(ti) so that a′ will get
added to pred(a) in line 6.

Algorithm 1 can be extended to restrict the set of possible
achievers for the preconditions of an action achiever(f , a)
based on the total-order of the method set and inferred neg-
ative effects, given in Algorithm 2.

Algorithm 2: Calculating Achiever Actions
Input: A problem Π = (D, sI , cI , g)
Output: achiever(f , a) for all a ∈ A, f ∈ prec(a)

1: achiever(f , a) = ∅ for all a ∈ A, f ∈ prec(a)
2: for all methods m = (c, ⟨t0, . . . , tn⟩) ∈ M do
3: for i = 1 to n do
4: for all a ∈ reachable(ti) do
5: for all p ∈ prec(a) do
6: for j = i− 1 to 0 do
7: if p ∈ eff −

∗ (tj)/del(tj) then
8: break
9: achiever(a, p) = achiever(a, p) ∪

{a′ ∈ reachable(tj) | p ∈ add(a′)}

Again, every method m = (c, ⟨t0, . . . , tn⟩) ∈ M is con-
sidered once. Now, for each task ti (i > 1), all of its reach-
able actions and their preconditions are considered. Preced-
ing tasks tj , j < i are checked for reachable actions that can
add these preconditions, updating the achiever sets. If some
preceding task tk, k < i deletes a precondition (according to
its (inferred) delete effects), we do not consider its reachable
actions nor the reachable actions of its predecessors (line 8).

Algorithm 2 runs in polynomial time in O(|M | ·
n2 · (reachmax )

2 · precmax ), where n is the size of
the largest task network within methods, reachmax =
maxt∈T |reachable(t)| and precmax = maxa∈A |prec(a)|.
Proposition 2. Let Π = (D, sI , cI , g) be a problem, a ∈ A
a primitive task, and achiever(a, p), pred(a) be calculated
according to Algorithms 1 and 2. Then it holds

•
⋃

p∈prec(a) achiever(a, p) ⊆ pred(a) and
• for all refinements ā of cI it holds if a, a′ ∈ ā, a′ ≺ a,
p ∈ prec(a) ∩ add(a′) and p is not deleted in between
then a′ ∈ achiever(a, p).

Proof Sketch. Since Algorithm 2 collects only actions that
add one of the preconditions, the set of achievers is a subset
of the predecessors calculated by Algorithm 1. Since for the
achievers some of the delete effects are taken into account in
line 8 even less actions are added.

For the second point, let us consider a refinement ā of
cI with a, a′ ∈ ā, a′ ≺ a, p ∈ prec(a) ∩ add(a′), where
no other action deletes p in between. According to Proposi-
tion 1 we know that a′ ∈ pred(a). Since no action in be-
tween deletes p, the condition for line 8 is not satisfied. So,
a′ is also added to achiever(a, p) since p ∈ prec(a) and
p ∈ add(a′).

We can now define our first version of our heuristic based
on the ILP presented in the last section with the set of pos-
sible achiever achiever(a, p) calculated by Algorithm 2,
which we denote hTOILP .

Theorem 1. For every solution of a TOHTN planning prob-
lem there exists a valid assignment of the ILP model.

Proof. Höller, Bercher, and Behnke (2020) already showed
for every solution of a DOF HTN planning problem, there



is a valid assignment of their ILP model. Since every solu-
tion of a TOHTN planning problem is also a solution under
delete and ordering relaxation, we know that there is a valid
assignment of our model that satisfies the task decomposi-
tion constraints C7 and C8. So we only need to check C1.
For all primitive tasks t ∈ A the variables CAt are set ac-
cording to how often the task is in the solution. Consider a
primitive task a with CAa > 0 and precondition f . Since
the plan is executable there must be an action a′ in the plan
adding f and no action deletes f in between. According to
Proposition 2 it holds a′ ∈ achiever(a, f ) and therefore C1
is satisfied since also CAa′ > 0.

The next question to ask is whether hTOILP performs
some relaxations or whether all valid assignments of the ILP
model correspond to some solution of an TOHTN problem.
From a theoretical point of view this is “unlikely” (or even
impossible, depending on the exact relationship of complex-
ity classes, which are still unknown) since TOHTN plan-
ning is EXPTIME-complete in general and still PSPACE-
complete for acyclic domains (Alford, Bercher, and Aha
2015). ILPs can only solve problems in NP. Basically two
relaxations are performed. Since we only check for achiev-
ers of preconditions and ignore most of the delete effects we
perform some delete-relaxation. Moreover, the total-order of
tasks is partially relaxed. Consider for example a method
containing a compound task c twice. Assume that c has two
methods m1 = (c, ⟨a1⟩) and m2 = (c, ⟨a2⟩), where a1 can
support a precondition of a2 and vice versa. Then the two
primitive actions are in the achiever sets of each other and
in a solution of a corresponding ILP the two actions could
support each other. However, actually only one of the pre-
conditions is satisfied because one action is applied before
the other, so the first one needs another action adding its
precondition.

To overcome this limitation one could duplicate primi-
tive and compound tasks so that every task occurs just once
over all methods task networks. So in the example above,
we then have two compound tasks c and c′, m1 and m2 un-
changed but two additional methods m′

1 = (c′, ⟨a′1⟩) and
m′

2 = (c′, ⟨a′2⟩), where a′1 and a′2 have the same precon-
ditions and effects as a1 and a2, respectively. In the worst
case such a transformation introduces exponential many new
tasks. If a transformation is possible with polynomial many
new tasks, we can actually encode an acyclic, delete-relaxed
TOHTN problem. Therefore, we call a TOHTN planning
problem Π = (D, sI , cI , g) a unique tasks problem if for all
tasks t ∈ A∪C there is at most one method m = (c, t̄) ∈ M
with t ∈ t̄ and additionally t is contained only once in t̄.

Theorem 2. Consider an acyclic, delete-relaxed total-order
HTN planning problem with unique tasks. Then, for every
valid assignment of the ILP model, there exists a corre-
sponding solution to the underlying TOHTN problem.

Proof Sketch. Consider an acyclic, delete-relaxed, unique
tasks TOHTN problem and a valid assignment of the cor-
responding ILP model. According to Höller, Bercher, and
Behnke (2020) the constraints C7 and C8 ensure that there
is a refinement of the initial task that contains exactly the

number of primitive tasks as indicated by the variables CAt .
Since the constraints C1 are satisfied, for all actions in the
plan and their preconditions there is an action adding it. So
we only need to verify that the actions appear in the correct
order so that all preconditions are satisfied. Since every task
(primitive or compound) appears exactly once in all meth-
ods there is only one sequence of decompositions leading to
that task. This implies that if for two actions a, a′ it holds
a′ ∈ pred(a) then a /∈ pred(a ′). This does also hold for
the achiever sets since they are subset of the predecessors.
So the achievers already encode some total-order over all
tasks and the refinement of the initial task is executable un-
der delete-relaxation.

Since we take some of the (inferred) delete effects into
account when we calculate the achievers (line 8, Alg. 2)
not every solution of an acyclic, delete-relaxed, unique tasks
TOHTN problem has a valid assignment of the ILP model.
Some of the non-executable ones (when considering delete
effects) are missing, which is beneficial for the heuristic
since they are recognizes as not being correct solutions.

If we remove line 8 (what we should not do in practice)
the ILP can exactly encode acyclic, delete-relaxed, unique
tasks TOHTN problems, which is the first encoding for this
class so far. This is also in line with the result by Alford
et al. (2014) that acyclic and delete-relaxed (t.o.) HTN plan-
ning is NP-complete. The result by Alford et al. actually tells
us that there must be an encoding in general without relying
on the unique tasks property. The hardness proof by Alford
et al. does not rely on unique tasks but we can adapt a reduc-
tion by Olz and Bercher (2023a) to show NP-hardness of
acyclic and regular, delete- and precondition-relaxed prob-
lems to unique tasks so that we can conclude that our studied
problem is also already NP-hard (and complete).

For our situation now, it needs to be evaluated empiri-
cally whether the transformation to unique tasks pays off
but a preliminary evaluation showed no positive effect. The
heuristic can be used nevertheless, it just relaxes the problem
a bit more in case of non-unique tasks as discussed above.

Admissibility
We saw that for every solution of a TOHTN planning prob-
lem there exist a valid assignment of the ILP model, so the
heuristic is safe. The objective function of the ILP minimizes
the number of primitive actions and methods that need to
be applied. So it estimates the distance to the goal and not
the length of a minimal plan. However that can easily be
changed by setting the objective function to just minimizing
the number of primitive tasks. Then the heuristic value is
bounded from above by the length of an optimal plan, which
makes it admissible. The artificial actions encoding the ini-
tial state and goal should be excluded in that function.

Corollary 1. The heuristic is admissible, goal aware, and
safe with the objective function min

∑
a∈A CAa .

Evaluation
We evaluated our proposed heuristic in satisficing planning,
where one tries to find a solution as fast as possible within



a given time limit, as well as optimal planning. Therefore,
we integrated the heuristic into the progression-based ver-
sion of the PANDAπ system34 (Höller et al. 2020). We used
the currently best-performing configuration according to the
last IPC in 2023, which is GBFS (and A⋆ for optimal plan-
ning, respectively) with loop detection (Höller and Behnke
2021) and dead-end analysis with look-aheads and early
refinements (Dealer) (Olz and Bercher 2023b; Olz, Höller,
and Bercher 2023). For completeness reasons we also in-
cluded the results without the latter, though below we focus
our report on results with Dealer since those yield overall
better results.

We compared our heuristic, called TOILP, against the
ILP-based heuristic DOF by Höller, Bercher, and Behnke
(2020) and the currently best-performing heuristics. For sat-
isficing planning, this is the Relaxed Composition (RC)
heuristic (Höller et al. 2020) in combination with the classi-
cal Add heuristic (Bonet and Geffner 2001) as RC(Add), and
for optimal planning, RC combined with LM-cut (Helmert
and Domshlak 2009) as RC(lmc), which is the only other
existing admissible HTN planning heuristic.

We run the evaluation on a machine with a Xeon E5-2660
v3 with 2.60GHz and 40 CPUs. As a benchmark set, we used
all problems of the 24 domains in the benchmark set of the
IPC 20205. Each planning problem was granted one core, a
maximum of 8 GiB RAM, and a time limit of 1800 seconds.

Satisficing Planning
In Table 1 we report results for satisficing planning: The
number of solved instances within the time and memory
limits (coverage), normalized coverage, where equal signif-
icance is assigned to all domains, ensuring that domains
with a multitude of instances do not overshadow those with
fewer instances, and the IPC score, which is computed by
min{1, 1 − log(t)/log(1800)}, where t is the time required
to solve the problem in seconds. It rewards solving problems
quickly.

The RC(Add) heuristic outperforms both other heuristics
over all in terms of solved instances (744 versus 496 and
415, respectively) and IPC score (15.32 versus 8.21 and
7.02, respectively). When the DOF heuristic was published
it was on par with the the RC(Add) heuristic on the bench-
mark set of that time. It is interesting to see that this pic-
ture changed completely with the new domains. There is not
a single domain in which the DOF solves more instances
than RC(Add). The TOILP heuristic can at least outperform
RC(Add) in two domains, namely Depots and Transport,
with 2 and 3 more solved problems, respectively.

Our main intention was to improve the DOF heuristic
so we compare it with the TOILP next. We observe that
TOILP could solve 19.5% more problems and the IPC score
was improved by around 17%. Looking at individual do-
mains, we can see that in the Logistics-Learned, Multiarm-
Blocksworld, and Towers domains, TOILP solved around
twice as many problems as DOF. In the Hiking domain,

3http://panda.hierarchical-task.net
4https://github.com/ipc2023-htn/PandaDealer
5https://ipc2020.hierarchical-task.net/
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Figure 2: Number of generated search nodes for optimal
planning. Be aware of the log scale.

TOILP solved 10 problems where DOF was only able to
solve 1 problem. So we can conclude that, indeed, overall
the TOILP performs better than the DOF heuristic on total-
order domains.

We evaluated the satisficing setting for reasons of com-
pleteness. Given that non-admissible heuristics often out-
perform admissible ones here, it is not too surprising that
TOILP does not emerge as the best overall.

Optimal Planning
Given the limited number of admissible HTN planning
heuristics available to date the TOILP heuristic has poten-
tial in optimal planning. As indicated in Table 2, the perfor-
mance gap between the RC heuristic and ILP-based heuris-
tics is indeed narrower in optimal planning than in satisficing
planning. Although the RC(lmc) heuristic still surpasses the
others in terms of coverage, with scores of 360 compared to
302 and 261, and in IPC scores, with 6.93 versus 5.56 and
4.71, respectively, the TOILP heuristic demonstrates supe-
rior performance in several domains. Notably, in 13 out of
24 domains, TOILP matched or exceeded the performance
of RC(lmc). The Childsnack domain stands out, where the
RC heuristic failed to solve any problems, whereas TOILP
and DOF solved 5.

The RC(lmc) heuristic runs in polynomial time, while
the ILP-based heuristics are capable of encoding and solv-
ing NP-hard problems. From a theoretical perspective, this
suggests that the ILP-based heuristics are more informed at
the cost of increased computation time. While with greedy
search such additional runtime often does not pay off since
we just want to find any solution, in optimal planning the en-
hanced information can prove valuable in narrowing down
the search space. This is supported by the data in Figure 2,
which shows that TOILP generally requires fewer search
nodes than RC(lmc) for most problems, with significant dif-



domain RC(Add)-Dealer RC(Add) TOILP-Dealer TOILP DOF-Dealer DOF
Coverage IPC Coverage IPC Coverage IPC Coverage IPC Coverage IPC Coverage IPC

Assembly 30 30 0.89 30 0.88 29 0.42 25 0.36 24 0.33 20 0.28
Barman-BDI 20 16 0.75 16 0.68 12 0.36 10 0.30 14 0.38 11 0.29
Blocksw.-GTOHP 30 30 0.86 30 0.94 25 0.75 25 0.71 27 0.76 25 0.68
Blocksw.-HPDDL 30 30 0.76 26 0.68 21 0.39 20 0.28 20 0.33 19 0.26
Childsnack 30 23 0.64 23 0.65 18 0.24 18 0.24 17 0.19 17 0.19
Depots 30 22 0.73 22 0.73 24 0.70 24 0.67 22 0.52 21 0.48
Elevator-Learned 147 147 0.75 147 0.60 124 0.43 108 0.35 107 0.35 95 0.30
Entertainment 12 12 0.94 12 0.95 12 0.87 12 0.86 12 0.81 12 0.80
Factories 20 11 0.37 8 0.32 6 0.22 5 0.17 6 0.20 4 0.15
Freecell-Learned 60 16 0.10 18 0.06 0 0.00 0 0.00 0 0.00 0 0.00
Hiking 30 25 0.67 25 0.68 10 0.16 10 0.22 1 0.01 1 0.01
Logistics-Learned 80 80 0.79 48 0.45 47 0.33 46 0.26 22 0.24 22 0.20
Minecraft Pl. 20 4 0.08 4 0.08 0 0.00 0 0.00 0 0.00 0 0.00
Minecraft Reg. 59 42 0.58 42 0.59 40 0.47 40 0.46 40 0.43 40 0.42
Monroe FO 20 20 0.50 20 0.50 0 0.00 0 0.00 0 0.00 0 0.00
Monroe PO 20 13 0.28 11 0.24 0 0.00 0 0.00 0 0.00 0 0.00
Multiarm-Blocksw. 74 74 0.89 74 0.80 35 0.18 14 0.10 16 0.11 12 0.08
Robot 20 20 0.93 20 0.91 20 0.75 11 0.53 20 0.76 20 0.74
Rover 30 27 0.57 29 0.65 9 0.24 9 0.24 9 0.23 9 0.23
Satellite 20 19 0.66 19 0.68 10 0.35 10 0.35 10 0.31 10 0.31
Snake 20 20 0.91 20 0.90 4 0.12 3 0.09 3 0.07 3 0.02
Towers 20 13 0.49 13 0.46 5 0.19 6 0.20 3 0.12 3 0.11
Transport 40 22 0.54 25 0.58 28 0.58 28 0.57 25 0.45 25 0.42
Woodworking 30 28 0.66 27 0.64 17 0.45 16 0.39 17 0.40 17 0.39

Overall 892 744 15.32 709 14.63 496 8.21 440 7.34 415 7.02 386 6.33
Normalized Coverage 19.50 18.85 12.23 11.03 10.89 10.24

Table 1: Coverage and IPC score for satisficing planning

ferences observed in several cases. This indicates that the
TOILP heuristic provides more precise heuristic values, al-
though the computation time remains slightly too high, re-
sulting in overall superior performance by RC(lmc).

Despite having considerably fewer variables and con-
straints than the DOF heuristic, the TOILP heuristic’s per-
formance, in terms of calculated search nodes, is comparable
to that of DOF, as illustrated in Figure 3, only a few prob-
lems need more search nodes. This suggests that TOILP’s
unique constraint ensuring executability, coupled with the
precalculated task ordering, delivers results of similar qual-
ity to those of the DOF constraints but faster.

Future Work
We already discussed some future work, which we briefly
recap now together with further ideas:

• The constraints for strongly connected components, as
proposed by Höller, Bercher, and Behnke (2020) in their
ILP model, could be incorporated to better handle cyclic
domains.

• We can introduce new tasks so that every task appears
just once over all methods, which makes the calculation
of achiever actions more precise. However, it also in-
creases the model, which might slow down the ILP solver
significantly.
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Figure 3: Number of generated search nodes for optimal
planning. Be aware of the log scale.



domain RC(lmc)-Dealer RC(lmc) TOILP-Dealer TOILP DOF-Dealer DOF
Coverage IPC Coverage IPC Coverage IPC Coverage IPC Coverage IPC Coverage IPC

Assembly 30 4 0.11 4 0.10 5 0.12 4 0.10 5 0.10 4 0.09
Barman-BDI 20 10 0.32 10 0.29 6 0.14 5 0.11 5 0.11 5 0.08
Blocksw.-GTOHP 30 26 0.68 23 0.61 25 0.73 25 0.66 24 0.71 23 0.62
Blocksw.-HPDDL 30 5 0.12 5 0.11 5 0.11 4 0.09 5 0.10 4 0.09
Childsnack 30 0 0.00 0 0.00 5 0.05 4 0.03 5 0.03 3 0.01
Depots 30 18 0.55 18 0.52 19 0.51 19 0.48 18 0.38 18 0.33
Elevator-Learned 147 92 0.33 112 0.39 67 0.24 64 0.22 55 0.20 53 0.19
Entertainment 12 5 0.42 5 0.42 9 0.58 9 0.57 8 0.53 8 0.52
Factories 20 6 0.23 5 0.20 5 0.20 4 0.15 5 0.18 4 0.14
Freecell-Learned 60 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00
Hiking 30 6 0.05 6 0.05 12 0.14 5 0.04 3 0.03 2 0.02
Logistics-Learned 80 27 0.25 27 0.25 22 0.20 22 0.18 22 0.20 22 0.17
Minecraft Pl. 20 2 0.03 1 0.02 1 0.01 0 0.00 1 0.00 0 0.00
Minecraft Reg. 59 33 0.33 33 0.33 38 0.35 38 0.35 33 0.27 33 0.27
Monroe FO 20 19 0.37 12 0.23 0 0.00 0 0.00 0 0.00 0 0.00
Monroe PO 20 10 0.15 7 0.14 0 0.00 0 0.00 0 0.00 0 0.00
Multiarm-Blocksw. 74 12 0.13 12 0.12 13 0.11 8 0.08 9 0.08 8 0.07
Robot 20 11 0.55 11 0.55 11 0.51 11 0.50 11 0.51 11 0.51
Rover 30 8 0.22 8 0.21 8 0.21 8 0.21 8 0.20 8 0.20
Satellite 20 6 0.21 6 0.21 10 0.34 10 0.33 10 0.29 10 0.28
Snake 20 20 0.76 20 0.68 4 0.13 4 0.10 3 0.07 3 0.02
Towers 20 13 0.48 12 0.45 6 0.19 6 0.19 3 0.10 3 0.10
Transport 40 10 0.15 9 0.14 15 0.28 14 0.27 13 0.24 13 0.19
Woodworking 30 17 0.51 16 0.50 16 0.40 13 0.34 15 0.37 15 0.35

Overall 892 360 6.93 362 6.51 302 5.56 277 5.00 261 4.71 250 4.25
Normalized Coverage 10.00 9.33 7.99 7.30 6.99 6.66

Table 2: Coverage and IPC score for optimal planning

• Currently we calculate the set of achiever tasks once in
the beginning, but one could update the sets according
to the reachable tasks of the current search node. Since
some methods may not be reachable anymore, the sets
can become smaller and more accurate. Whether this ad-
ditional computation time pays off is an open question.

• The ILP (Integer Linear Program) can be relaxed to a LP,
where the variables can be assigned real numbers instead
of integers. LPs are solvable in polynomial time but the
solution might not correspond to a plan anymore. Since
the objective value of an LP is always less or equal to
the one of the corresponding ILP the heuristic is still ad-
missible. It needs to be evaluated whether the speedup
of calculation time can compensate the loss of informa-
tion. In the original work by Höller, Bercher, and Behnke
(2020) the ILP version was slightly better.

Conclusion
We proposed a novel ILP-based HTN planning heuristic tai-
lored to total-order domains. The ordering information is
calculated in advance and integrated into the ILP model so
that the number of constraints can be significantly reduced
compared to an existing ILP heuristic, which ignores the or-
dering completely. Empirical results indicate that the new
heuristic outperforms the original one clearly, dominating

it in terms of solved instances (coverage) and IPC score
on every existing total-order domain. When comparing our
NP-complete heuristic against the currently best performing
admissible HTN heuristic that can be computed in polyno-
mial time, RC(lmc), results are mixed. When looking at the
overall sum of solved instances and IPC score, RC(lmc) per-
forms better than the one proposed. However, neither dom-
inates the other. This shows the higher informedness of our
proposed heuristic pays out in several domains, but it too
costly in several others. It will be interesting to see how the
proposed heuristic performs with further progress on the re-
search question on how to compute inferred effects of com-
pound tasks. The informed of the heuristic depends on the
amount of effects computed, so the heuristic will automati-
cally become more informed when more preconditions and
effects can be identified in the preprocessing step that this
heuristic and the Dealer technique depend upon.
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