Laying the Foundations for Solving FOND HTN Problems: Grounding, Search, Heuristics (and Benchmark Problems)

Mohammad Yousefi, Pascal Bercher

School of Computing, The Australian National University firstName.lastName@anu.edu.au

Formalization

A task network $tn = \langle T, \prec, \alpha \rangle$ is a partially ordered multiset of primitive and abstract tasks. P

A compound task can be decomposed using a **method** $m = \langle c, tn \rangle$.

All-Outcome-Determinization (AOD)

Replace all non-determinsitic actions with synthetic abstract tasks.

If the *precondition* of a **primitive action** is satisfied in the current *state*, it can be executed, resulting in a non-deterministic *effect* on the state.

A strong solution executes all tasks (even in the face of unfavorable outcomes) in a finite number of steps. Formally, policies are partial functions $\pi: TN \times S \to T \times M \cup \{\varepsilon\}$ (exploiting task network isomorphism)

$\mathbf{A}_{\mathcal{I}}$ J4

Grounding

- 1. Determinize the lifted domain,
- 2. Use any classical HTN grounder,
- 3. Re-infer a grounding for the FOND domain based on the number of groundings of the synthetic abstract tasks (e.g., if a synthetic task had 4 effects, but only 3 ground methods, it cannot contribute to a strong solution).

For example, consider a non-deterministic action (A ?x ?y) with two

Search & Heuristics

We utilize **AO**^{*} to gradually search the hypergraph of progression space, and use the AOD relaxation as a heuristic to guide the search.

effects e_1 and e_2 where the groundings after AOD relaxation are as follows. We can infer that only $(A \times 2 \times y1)$ is a valid grounding of A.

$\langle x_1, y_1 angle$	$\langle x_1, y_1 \rangle$	
$\langle x_1, y_2 \rangle$	$\langle x_1, y_2 \rangle$	
$\langle x_2,y_1 angle$	$\langle x_2, y_1 angle$	
$\langle x_2, y_2 \rangle$	$\langle x_2, y_2 angle$	

Evaluation

We have evaluated our planner on 5 novel benchmark domains (75 problem instances) with 3 heuristics on one CPU core, 8 GB of RAM, and a 30-minute threshold.

_	Don	Heuristic	IPC Score	Coverage	Avg. Execution Structure	
	nain				# of Nodes	CP Length
		RC^{Add}	6.92	10 of 15	150.80	127.20
	epots	RC^{FF}	6.99	10 of 15	150.80	127.90
		RC^{Max}	7.26	10 of 15	149.70	126.20
-	т	RC^{Add}	5.16	6 of 15	28.00	21.83
	Rover	RC^{FF}	5.00	5 of 15	23.80	17.80
		RC^{Max}	5.00	5 of 15	23.00	17.00
	Chil	RC^{Add}	1.66	3 of 15	64.00	45.00
	dSr	RC^{FF}	1.59	3 of 15	64.00	45.00
	nack	RC^{Max}	1.66	3 of 15	64.00	45.00
_	S	RC^{Add}	5.92	7 of 15	33.86	16.86
	tell	RC^{FF}	4.16	7 of 15	33.71	16.86
	ite	RC^{Max}	5.92	7 of 15	32.57	15.86
	Tra	RC^{Add}	3.48	5 of 15	400.60	45.40
	nsp	RC^{FF}	4.04	5 of 15	99.20	33.80
	ort	RC^{Max}	3.32	4 of 15	94.50	31.75

7th Workshop on Hierarchical Planning (HPlan 2024)