Grounding, Search, and Heuristics in FOND HTN planning

Mohammad Yousefi

Presenter

Pascal Bercher

Supervisor

ANU/CECC

March 25, 2024

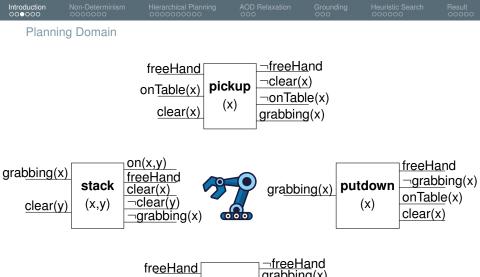
Australian National University

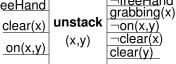
Introduction	Hierarchical Planning	AOD Relaxation		

Outline

- Introduction
- Non-Determinism
 - Solutions and Guarantees
- Hierarchical Planning
 - Formalization
 - Non-Determinism in Hierarchical Planning
- AOD Relaxation
- Grounding
- Heuristic Search
 - Search
 - Heuristic
- Result

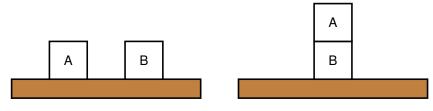
troduction	Hierarchical Planning	AOD Relaxation		

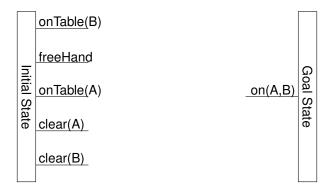

Introduction



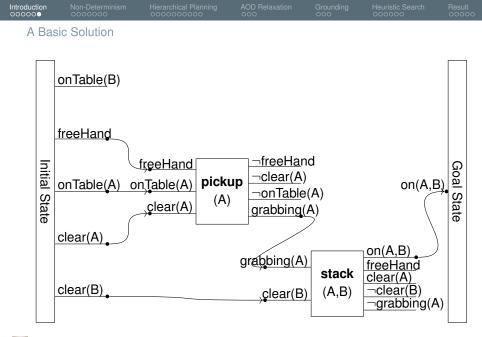
Introduction 00000		Hierarchical Planning	AOD Relaxation		Result 00000
Introduction					

Planning is a systematic approach to problem solving. It involves reasoning about resources, constraints, and taking actions to achieve an outcome.





Goal State



Formally, a classical planning problem is a tuple $P = \langle F, A, I, G \rangle$ where *F* is a set of propositions, *A* is a set of actions, and *I*, *G* are the initial and goal states.

Australian National University Mohammad Yousefi and Pascal Bercher

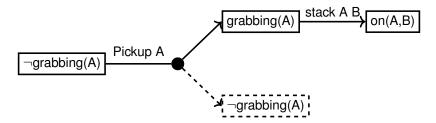
Introduction	Non-Determinism ●○○○○○○	Hierarchical Planning	AOD Relaxation		Result 00000

Non-Determinism

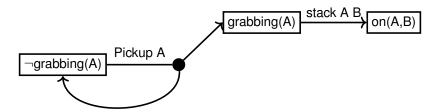
Introduction	Non-Determinism O●○○○○○	Hierarchical Planning	AOD Relaxation		Result 00000
Examp	le				

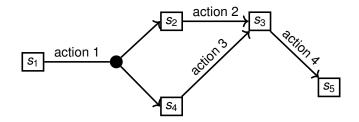
Introduction	Non-Determinism	Hierarchical Planning	AOD Relaxation					
Solutions and Guarantees								

In the presence of non-determinism, in a fully-observable environment, solutions (which are called *policies*) are a mapping from observations (e.g., states) to execution steps (e.g. actions).


Introduction Non-Determinism Hierarchical Planning AOD Relaxation Grounding Heuristic Search Result 0000000 Solutions and Guarantees: Classical Policy

Formally, a classical FOND policy π is defined as a partial function $\pi: S \to A$ where S is the set of states, and A is the set of actions [1].


Weak solutions are optimistic plans that only work if the outcomes are favourable.


Strong cyclic solutions guarantee termination in a goal state regardless of uncertainty.

Strong (acyclic) solutions guarantee termination in a goal state regardless of uncertainty, **without having a cycle**. Hence, they have a finite number of execution steps. The provided example does not have a strong solution.

Introduction	Hierarchical Planning	AOD Relaxation		Result 00000

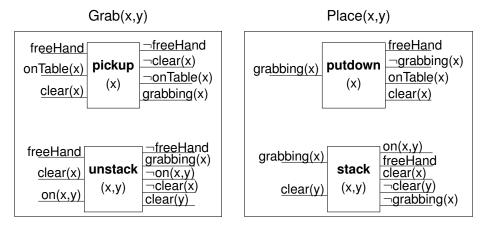
Hierarchical Planning

Introduction Non-Determinism Hierarchical Planning OOO Relaxation Grounding Heuristic Search Result

In the provided example, it is easy to see that all solutions are of the form:

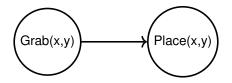
 $[\texttt{grab a block}] \rightarrow [\texttt{put it somewhere else}]$

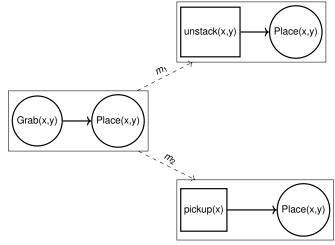
This phenomenon occurs in many planning problems, and gives us another perspective on planning, namely hierarchical refinement.


Introduction Non-Determinism Hierarchical Planning AOD Relaxation Grounding Heuristic Search Result

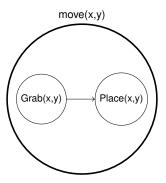
Formalization: Some More Examples

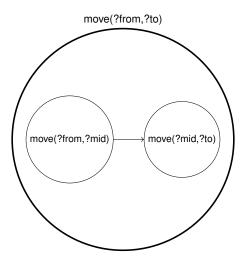
Uber Eats: [Restaurant prepares the order] \rightarrow [Driver picks it up] \rightarrow [Driver delivers it] **Travelling**: [Go to airport] \rightarrow [Fly to the destination] \rightarrow [Go to Hotel] **Getting a PhD**: [Do research] \rightarrow [Write a dissertation]





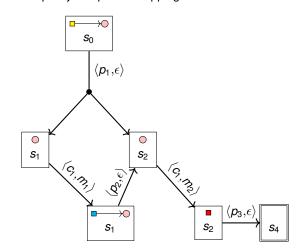
A task network $tn = \langle T, \prec, \alpha \rangle$ is a partially ordered multiset of tasks.


A refinement method $m = \langle c, tn \rangle$ decomposes a compound task c to its refined task network.


Compound tasks may contain other compound tasks as well. This allows hierarchical representation of tasks.

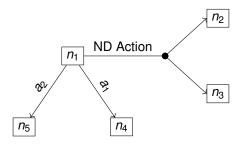
Introduction Non-Determinism Hierarchical Planning AOD Relaxation Grounding Heuristic Search

Recursion happens when a compound task contains a copy of itself.

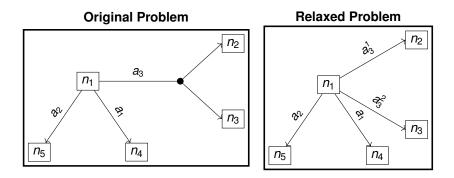

Non-Determinism in Hierarchical Planning

Two formalisms has been put forth to deal with non-determinstic tasks in HTN planning [2, 3]. We focus on the more expressive, methodbased, one.

A method-based policy is a partial mapping π^{MP} : $TN \times S \rightarrow T \times M \cup \{\epsilon\}$.


Introduction	Hierarchical Planning	AOD Relaxation ●○○		

AOD Relaxation


FOND problems are often represented as an AND/OR graph (also known as a hypergraph), which is a generalisation of a canonical graph that allows multiple connections using a single edge.

Our relaxation drops the "and" semantic from the search space.

Introduction	Hierarchical Planning	AOD Relaxation	Grounding ●○○	

Grounding

Introduction		Hierarchical Planning	AOD Relaxation	Grounding ○●○	Result 00000
What is	s Grounding?				

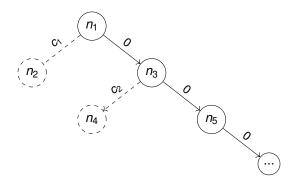
Even though planners operate in grounded (i.e., variable free) domains, PDDL and HDDL allow parameterized representations. For example unstack(?x, ?y -block) is a generic action applicable to all ?x and ?y of type block.

Given a set of non-deterministic action names, N_{nd} , and a valid grounding obtained for the AOD-problem:

- For all ground compound tasks $C[o_1, o_2, ..., o_k]$, if $C \in N_{nd}$ and it has as many methods as the number its outcome, infer its grounding $[o_1, o_2, ..., o_k]$ as a valid grounding for the corresponding non-deterministic action, otherwise skip.
- Copy all remaining groundings (those not covered in the previous loop, i.e., actions), to the valid groundings in the non-deterministic domain.

Introduction	Hierarchical Planning	AOD Relaxation	Heuristic Search ●○○○○○	Result 00000

Heuristic Search


Search: Non-Recursive Domains

- Weak Solutions: A*
- Strong Solutions:
 - Acyclic Search Spaces: AO*(CF)
 - Cyclic Search Spaces: AO*(CFC_Rev*)
- Strong Cyclic Solutions: LAO*

Recursive domains make search **very difficult** because they introduce infinite-length zero-cost paths.

The solution to this problem is still an open research question for us, but possible solution candidates are:

- "pseudo" multi-objective search, and
- randomized tie-breaking.

Heuristics are easy-to-compute information that guides the search process toward goal nodes. They are usually obtained from a relaxed version of the problem.

We have relaxed the undecidable HTN planning problem to a polynomial time computable heuristic function through a cascade of relaxations.

- Relax the FOND HTN problem (undecidable) to a deterministic one (undecidable) using the all-outcome-determinization procedure.
- Relax the deterministic problem to a classical planning problem (PSPACE-Complete) using the Relaxed Composition (RC) procedure.
- Use any deterministic classical heuristic e.g., FF (Poly-Time), and Add (Poly-Time).

Introduction	Non-Determinism	Hierarchical Planning	AOD Relaxation	Grounding	Heuristic Search	Result ●0000

Result

Introduction	Hierarchical Planning	AOD Relaxation		Result o●ooo
Setup				

- We have modified 5 hierarchical domains of IPC '20 to include non-deterministic actions,
- Each domain has 15 problem instances,
- 30 min cut-off time.

Introduction	Hierarchical Planning	AOD Relaxation		Result 00●00

	Pr	IPC Score		Coverage		Avg. Execution Structure			
Domain	Problems					# of Nodes		CP Length	
	ns	Add	FF	Add	FF	Add	FF	Add	FF
Depots	15	6.92	6.99	10	10	150.80	150.80	127.20	127.90
Rover	15	5.16	5.00	6	5	28.00	23.80	21.83	17.80
Snake	15	2.54	2.45	4	4	32.75	32.75	27.00	27.00
Satellite	15	5.92	4.16	7	7	33.86	33.71	16.86	16.86
Transport	15	3.48	4.04	5	5	400.60	99.20	45.40	33.80

- A. Cimatti, M. Pistore, M. Roveri, and P. Traverso. "Weak, strong, and strong cyclic planning via symbolic model checking". In: *Artificial Intelligence* 147.1 (2003), pp. 35–84.
- [2] D. Chen and P. Bercher. "Fully Observable Nondeterministic HTN Planning – Formalisation and Complexity Results". In: Proceedings of the 31st International Conference on International Conference on Automated Planning and Scheduling. AAAI Press, 2021, pp. 74–84.
- [3] D. Z. Chen and P. Bercher. "Flexible FOND HTN Planning: A Complexity Analysis". In: Proceedings of the 32nd International Conference on International Conference on Automated Planning and Scheduling. AAAI Press, 2022, pp. 26–34.

Introduction	Hierarchical Planning	AOD Relaxation		Result ○○○○●

THANK YOU!

