
A Survey on Model Repair in AI Planning

Pascal Bercher1 , Sarath Sreetharan2 , Mauro Vallati3
1School of Computing, Australian National University

2Department of Computer Science, Colorado State University
3School of Computing and Engineering, University of Huddersfield

pascal.bercher@anu.edu.au, sarath.sreedharan@colostate.edu, m.vallati@hud.ac.uk

Abstract

Accurate planning models are a prerequisite for
the appropriate functioning of AI planning applica-
tions. Creating these models is, however, a tedious
and error-prone task – even for planning experts.
This makes the provision of automated modeling
support essential. In this work, we differentiate be-
tween approaches that learn models from scratch
(called domain model acquisition) and those that
repair flawed or incomplete ones. We survey ap-
proaches for the latter, including those that can be
used for domain repair but have been developed
for other applications, discuss possible optimiza-
tion metrics (i.e., which repaired model to aim at),
and conclude with lines of research we believe de-
serve more attention.

1 Introduction
AI planning (or: automated planning) allows the autonomous
generation of courses of actions – action plans that can serve
as basis for autonomous behavior. Planning systems rely on
planning models, a formal representation of the environment
(most notably the available actions). For any application, it is
of crucial importance that these models are correct. Incorrect
models could lead to suboptimal system behavior (e.g., not
even allow to generate certain plans according to the model
that would be possible in the real world) or produce incorrect
plans (i.e., those that do not work in the real world). In the
extreme case, incorrect models might lead to safety issues for
the system and the deployment application.

Work on Knowledge Engineering for Planning and
Scheduling (KEPS) has thus been a long-standing research
area, with various approaches and tools supporting in the
domain engineering process (see a recent overview by Val-
lati and Kitchin [2020]). Most tools directly support writing
PDDL [Haslum et al., 2019] (the de-facto standard descrip-
tion language for planning problems), such as the well known
online PDDL editor planning.domains [Muise and Lipovet-
zky, 2020], which offers standard programming capabilities
like syntax highlighting, auto-completion, and a few plug-
ins for more advanced capabilities by third parties. Similar
ideas were implemented in WebPlanner [Magnaguagno et al.,

2020], another online PDDL modeling tool that is unfortu-
nately not available anymore. Offline tools also exist, such
as MyPDDL [Strobel and Kirsch, 2020], itSIMPLE [Vaquero
et al., 2007], or the PDDL plugin for Visual Studio Code.
Whereas these tools are extremely useful (and hence exten-
sively used), their intelligent support for developing or re-
pairing domains autonomously is limited, as they focus on
standard programming environment capabilities and visual-
izations, and do not explicitly support refinement and main-
tenance of existing models. Recent work by Grundke et al.
[2024] is also worth mentioning, although it is purely theo-
retical. They propose a framework based on PDDL axioms
that allows to characterize the set of legal planning problems,
which they envision can lead to a domain-independent prob-
lem creator with valid problem instances.

Approaches for encoding planning knowledge models can
– as we propose in this survey – roughly be categorized along
two dimensions: Domain acquisition/learning and Domain
repair. The first can be considered as starting from scratch,
i.e., with an initially empty/non-existent model plus addi-
tional data from which the model can be learned and formu-
lated. This research area is quite prominent — so much so
that even a few surveys exist already [Jiménez et al., 2012;
Arora et al., 2018; Jilani, 2020]. As a first contribution, here
we provide a definition of domain model repair to be, infor-
mally, the setting where we are also given an initial model to
repair – this setting hence generalizes the latter as it is also
able to take an initially empty given model into account that
is supposed to be repaired.

To the best of our knowledge, no survey on model repair
exists as of yet – which is what we provide in this work.
Most notably, we do not just survey works that have been
specifically developed for intelligent modeling support, but
also those that could be used for that purpose (as they inter-
nally use model repair techniques), but were developed for
different application scenarios, thus making their relevance
less apparent within this important research landscape. For
the surveyed work, we aimed for completeness within the
field, while focusing on publications from top-tier venues
(most work is from AAAI, IJCAI, and ICAPS, but we consid-
ered all top-tier venues in our area). We specifically excluded
workshop publications or other venues that are not top-tier.

We also provide a short discussion on comparing planning
models, which is essential in our context as it is a non-trivial



question which repaired model – among all those satisfying
the given constraints – should be chosen.

In the end, we summarize the existing works and conclude
by stating which research questions in the field of model re-
pair are yet underrepresented and deserve further attention.

2 Planning Formalism
Although model repair is possible for any devisable plan-
ning framework (i.e., no matter how expressive it is, e.g.,
whether it supports time, uncertainty, partial observability,
disjunctive preconditions, conditional effects, object creation,
hierarchies, or any other extension), most approaches at the
time have been developed for the lowest level of expressiv-
ity, where these extensions are not present. We hence re-
strict ourselves to formally explaining the most simplistic
version, classical planning, and then extend it to hierarchi-
cal planning, as all other extensions can be combined with
both of them. For the sake of simplicity, we focus on pro-
viding a propositional framework, and later briefly explain
how models are specified in practice using standard descrip-
tion languages such as PDDL [Haslum et al., 2019] (for
classical/non-hierarchical problems) or HDDL [Höller et al.,
2020] (for hierarchical models).

A classical planning domain model D = (F,A) consists of
the finite set of existing facts that encode all possible world
properties. The set of collections of facts, 2F (the power set
of facts), is called the state space, and every member s ∈ 2F

is called a state. We assume the closed world assumption,
meaning that all f ∈ s hold in that state, but all f ′ /∈ s
do not hold in that state. A ⊆ 2F × 2F × 2F × 2F is a
finite set of actions. Actions describe state transitions, spec-
ifying the conditions in which states they are applicable and
describing how said states change. More specifically, each
action is a 4-tuple a = (pre+, pre−, eff +, eff −), with posi-
tive and negative preconditions and effects, respectively. An
action a is said to be applicable in state s ∈ 2F if and only
if pre+ ⊆ s and pre− ∩ s = ∅, thus specifying which state
features must be true and which are not allowed to be true.
If a is applicable in state s, it generates the successor state
s′ = (s \ eff −) ∪ eff +.

Having defined the domain model, we can now define the
planning problem, formally given as a 3-tuple (D, sI , g), con-
sisting of its planning domain model, an initial state sI ∈ 2F ,
and a goal description g ⊆ F , which describes all facts that
we’d like to have achieved. We call a state goal state if it
makes all goals true. Thus, g implicitly defines a set of goal
states {s | s ⊇ g}. One could also allow the exclusion of
facts (rather than just the inclusion), but that is usually not
done in the formalism for the sake of simplicity.

Solutions are action sequences that turn the initial state into
a goal state. More formally, an action sequence a1, . . . , an is
called a solution (or plan) if and only if there is a sequence of
states s0, . . . , sn, such that s0 = si and for each 1 ≤ i ≤ n,
ai is applicable in state si−1 and generates state si, and sn ⊇
g, i.e., the sequence generates a goal state.

We now proceed with totally ordered Hierarchical Task
Network planning (which we just refer to as HTN planning,
for short) [Bercher et al., 2019]. Here, actions are organized

in a hierarchical manner, for which we add so-called com-
pound tasks, that can be refined into sequences of primitive
and compound tasks (where primitive tasks are a new name
for actions in the context of HTN planning) using refinement
rules (similar to formal languages), called (decomposition)
methods. More formally, an HTN domain model is a tuple
D = (F,C,A,M), where F and A are finite sets of facts
and actions as before, C is a finite set of strings, so-called
compound tasks (or compound task names), and M is a set
of methods. Each method formally is a 2-tuple (c, t̄), where
c ∈ C is a compound task and t̄ ∈ (C ∪ A)∗ is a (possi-
bly empty) task sequence. Now, a task sequence t̄1ct̄2 can
be refined by a method (c, t̄0) ∈ M into the sequence t̄1t̄0t̄2.
An HTN planning problem is given by the tuple (D, sI , t̄, g),
consisting of an HTN domain model D, an initial state sI , an
initial task sequence t̄, and a goal description g.

Finally, an HTN solution is simply a classical solution (i.e.,
action sequence) ā to the induced classical planning problem
that can be obtained from t̄ using the decomposition methods.
In other words, HTN planning acts as a “filter” on classical
planning problems, where some plans that would usually be
considered solutions are now ruled out, as only those (appli-
cable, goal-generating) action sequences are considered solu-
tions that can be obtained by adhering to the task hierarchy.

Finally, note that the formalisms presented above were
fully propositional, which is not how problems are modeled in
practice. Consider a simple Logistics domain, where we have
a set of locations (say L1 to Ln), a number of packages (say P1

to Pm), and trucks that can drive between locations to deliver
packages. To model this, one needs to express at which lo-
cations packages may be, giving rise to a predicate at(?p, ?l)
encoding that package ?p is at location ?l. Using facts, we
would require one fact for each instantiation, e.g., facts at-P1-
L1 to at-Pm-Ln, leading to m · n facts instead of just a single
predicate and a set of n and m objects. This explosion scales
exponentially in the arity of predicates. Likewise, actions are
in practice not using facts either, but similarly a representa-
tion using variables, such as drive(?t, ?l1, ?l2), which allows a
truck (?t) to drive from one location (?l1) to another (?l2), us-
ing only variables in the problem specification. Such actions
are called action schema, yet can be turned into the presenta-
tion from above by simple “grounding”, i.e., instantiating all
variables with all possible constants. Such schematic plan-
ning languages are called lifted, and usually expressed in the
modeling languages PDDL [Haslum et al., 2019] (for classi-
cal planning and many of its extensions) and HDDL [Höller
et al., 2020] (for HTN planning).

3 On Model Repair vs. Model Acquisition
In this survey, we focus on approaches for performing model
repair. Informally, model repair can be defined as the process
of refining a given model according to a set of constraints that
should be satisfied, by making changes to the model (e.g., add
new actions, change actions’ parameters, or their precondi-
tions and effects). While this notion gives a good intuition of
the model repair task, it might not be sufficient to crisply dis-
tinguish between model repair and model acquisition for the
purposes of this survey, i.e., to give a concise inclusion and



exclusion criterion of the work surveyed.
A large number of automated approaches to model acqui-

sition starts from an initial (partial) model, which is then re-
fined according to some domain knowledge provided under
the form of either plan traces or given transition systems.
An early example is the work(s) by McCluskey et al. [2002],
where partial domain information in terms of predicates, in-
variants, etc., is given (though in a description language dif-
ferent from standard PDDL), and a mixed-initiative process
builds the action model based on user-provided action traces,
which are action names with their instantiated arguments1.
Their system also allows the creation of hierarchical models.
We refer to existing surveys on domain model learning for
further information [Jiménez et al., 2012; Arora et al., 2018;
Jilani, 2020].

Usually, initial models are just minimalistic ones that allow
the learning to start in the first place (e.g., by providing action
names), whereas we regard model repair as having a “more
complete model” (which could be created by model acquisi-
tion in the first place, or otherwise also modeled by hand) that
is potentially either not entirely complete, not correct, or not
optimal, and so it is repaired to ensure that it satisfies all those
properties that we would like to have satisfied.

To solve the classification conundrum, here we rely on the
model development taxonomy introduced by McCluskey and
Porteous [1997]. The taxonomy considers four levels of mod-
els: initial, compilable, runnable, and proven.

• Initial models are not syntactically correct and encode
only some of the aspects of the domain at hand.

• Compilable models are syntactically correct, according
to the target language, and can be parsed by planning
engines or syntax validators, but they do not encode the
full dynamics of the domain.

• Runnable models are syntactically correct and can be
used to solve at least a subset of problems from the target
domain, when an appropriate planning engine is used.

• Proven models satisfy the requirements of the target ap-
plication and can be used in production. They embody
the properties of accuracy, consistency, completeness,
adequacy, and operationality [McCluskey et al., 2017].

On the basis of this taxonomy, we can define model acqui-
sition approaches as those that extend or refine input models
that are either initial, or (more common) compilable. Please
note that we consider an empty model as initial. This means
that they start in the early stages of model creation. In con-
trast, we do not have such a requirement for model repair,
meaning that they also could also start in later stages, i.e., to

1At first glance this might appear as in instance of a repair prob-
lem, since partial models are already available to build on. How-
ever, given that preconditions and effects are not specified yet, these
models can not be “runnable” yet. Further, the model given can be
regarded similar to additional information in learning approaches,
such as transition systems. Also note that their technology seems
to easily work as well with existing preconditions and effects given,
especially since the process is not fully automated. So, one could
also regard it suitable for repair problems.

refine runnable and proven models. In the following we pro-
vide additional details on the two classes and the proposed
rough categorization.

3.1 Model Acquisition
Model acquisition, also referred to as model formulation, ar-
ticulation, or model learning in the literature [McCluskey et
al., 2017; Vallati and McCluskey, 2021], is the process of en-
coding domain knowledge into a model that can be provided
as input to a planning engine to generate solutions. Please
note that, as presented in Section 2, the domain model is the
set of predicates/facts and actions in case of non-hierarchical
planning, and also compound tasks and decomposition meth-
ods in case of hierarchical planning.

Let us now define this process more formally, according to
the considered model development taxonomy.

Definition 1. The model acquisition process is the process
where an initial or compilable model is refined according to
available domain knowledge.

Please note that the definition does not fully characterize
the level of the resulting refined model – since this depends on
the quality and characteristics of the provided domain knowl-
edge. There are no restrictions on the way in which the do-
main knowledge can be provided.

There are a number of surveys already focusing on the
model acquisition process, hence this is not the target of this
work. The interested reader is referred to overviews of the
field [Jiménez et al., 2012; Arora et al., 2018; Jilani, 2020].
The recent works by Aineto et al. [2018] and Balyo et al.
[2024], although not surveys, have comprehensive related
work sections that give excellent overviews of the field.

3.2 Model Repair
The process of model repair can encompass different tra-
ditional knowledge engineering processes, such as mainte-
nance and evolution [McCluskey et al., 2017; Vallati and Mc-
Cluskey, 2021], according to the underlying cause of the re-
pair and the extent of the modifications.

Definition 2. The model repair process is the process where
a given model is refined, according to a set of provided con-
straints into a model that satisfies these constraints.

Note that also in this definition, we do not specify the re-
sulting level of the refined model. Whereas in practice we
assume that often one starts with a model that is already
runnable or proven and hence has to also result into a similar
or higher level, we also regard it conceivable to get supported
in early development stages, where further manual modeling
might be required to finish the model.

Further, note that in the definition on model acquisition
the input is domain knowledge, whereas here the input are
constraints. In principle, they can be the same, though we
used different terminologies since domain model acquisition
is usually done in earlier stages, where also more funda-
mental domain knowledge has to be provided, such as entire
state transition systems or large amounts of plan traces that
would allow to derive a model from it. In contrast, we ex-
pect model repair to be deployed in later development stages,



usually even for runnable or proven models. Hence, the do-
main knowledge provided here might be less comprehensive
and only point to properties that we would like to be satis-
fied, rather than providing large amounts of data that allow
the model to be derived in the first place.

One can also observe that according to our classification,
it follows that domain model repair can be regarded a gen-
eralization of model learning, as it can take an initial (more
complete) model into account, whereas typical domain model
learning approaches start much earlier and do not aim at mak-
ing changes, but provide the required information (e.g., pre-
conditions and effects) in the first place.

Also, we are deliberately abstract in what these “con-
straints” could be, as their definition is limited only by cre-
ativity and the specific requirements of the given application
domain. In fact, one of the purposes of this survey – on top of
providing this classification and pointing to recent develop-
ments in model repair – is to make aware of the huge amount
of model repair techniques that are conceivable, as there is
almost no limit on which properties could be posed as con-
straints. We are going to see several of these constraints
that have been used in literature for model repair, but pro-
vide further examples here, although not yet implemented by
any work we are aware of. Constraints that could be pro-
vided might encompass: Plan traces: One or more action
sequences could be provided, and required to be solutions in
the respective planning problems. Likewise, such plan traces
could be demanded to not be solutions (e.g., if observed to
not work in the environment). Properties of state transition
systems: One could demand that all executable action se-
quences, or just all solutions (or optimal ones, etc.) show
specific properties. A well-known one is mutex relations. So,
we could demand that certain facts never occur at the same
time in any produced state. For example, demanding that in
a logistics domain that deals with the transportation of pack-
ages, no truck can ever be at two locations at the same time,
i.e., no at(?p, ?l1) and at(?p, ?l2) can be true in the same
state for any two different ?l1 and ?l2. Mutex relations can be
inferred already [Helmert, 2006; Alcázar and Torralba, 2015;
Fišer and Komenda, 2018] from a model or problem speci-
fication, but as of yet, to the best of our knowledge, no ap-
proach allows to establish them by a repair.

The above are just some examples to show that any prop-
erty a planning domain model could possess could also be
posed as constraint, which a respective model repair system
then had to achieve by changing the model. An important
question is which properties would help a domain modeler
to ensure that the encoded model does possess the required
properties – where many could be envisioned. Also, the
examples given above could easily be generalized: finitely
many given plan traces could be generalized to infinitely
many by using a regular expression over action names or
grammar-like structures like in hierarchical planning. Even
more general properties are conceivable, like “there is at least
one solution” or solutions of certain length or cost. Like-
wise, mutex relations are just a special case of more gen-
eral properties as can be expressed by Linear Temporal Logic
(LTL) [Pnueli, 1977; Lin and Bercher, 2022]. Linear Tempo-
ral Logic (LTL) is a formalism to express temporal properties

over sequences of states, such as “no package is ever in two
places at once” or “every package is eventually delivered”.
It is worth noting that there are approaches that enforce that
LTL (or related) constraints are respected by all solutions by
applying only actions in line with the constraints [Bacchus
and Kabanza, 1998; Chrpa et al., 2020], which is, however,
different from making sure that the actions by themselves
(i.e., by changing their preconditions/effects) make these LTL
formulae true, which would be the idea behind using them for
model repair.

Finally, note that there are usually many (repaired) plan-
ning models that satisfy the given constraints. The ques-
tion which of those is to be preferred is hence an important
one and a research question on its own (yet still underrepre-
sented). We show existing work and discuss it in Section 5.

4 Model Repair Approaches
It is worth noting that while some works explicitly mention
the application domain modeling support, not all of them do.
In the following, we review the work that explicitly performs
a model repair process as per our definition – even if they
do not envision the application of modeling support. We or-
ganize this section by what constraints are posed onto the
model/problem to satisfy.

4.1 Constraint: Make Problem(s) Solvable
One of the most prominent constraints posed onto planning
models is to demand that a given (set of) problem(s) is solv-
able. I.e., in the works reviewed below, the input is always
a planning problem that does not admit a solution (or if they
do, then no repair will be required).

The first and oldest work we review is also the least re-
lated. The reason is that this survey focuses on model repair,
which implies that an incomplete or flawed domain model
is the cause of the issue, thus requiring changes. The first
work that fixes unsolvable (classical) planning problems, by
Göbelbecker et al. [2010], does however make problems solv-
able by making changes to the initial state, not by changing
action definitions. Although this work does thus not quite fit
our inclusion criterion, we list it here due to its importance
and potential for incorporation into approaches that also al-
low changing action definitions. Their approach finds solu-
tions, i.e., changes to the initial states that make the respective
problem solvable, by compiling this “repair problem” into an-
other classical planning problem. They define different kinds
of “repairs”, called excuses in their work (a repair is an “ex-
cuse” that justifies the unsolvability), and provide complexity
results for these problems.

A mostly theoretical work, though with potential practi-
cal application, shows that the task of making an unsolvable
problem solvable – by changing the initial state, adding new
actions, or changing the goal description – can be modeled
using a variant of Propositional Dynamic Logic [Herzig et
al., 2024]. We are not aware of any implementation of their
framework, though also argue that only adding actions rather
than revising the existing ones is more related to model learn-
ing than to model repair.

A practical approach that has been widely used in the con-
text of “explaining unsolvability” (or plan invalidity) is state



abstraction [Sreedharan et al., 2021b]. For example, works
have looked at using abstractions as a means for identify-
ing counterfactual models where the plans of certain desired
properties may be valid [Krarup et al., 2024], or they can be
used to identify the simplest abstraction of the problem that
is still unsolvable or the desired plans are still invalid. In the
former case, the counterfactual model allows the users to see
what properties should be relaxed to get desired behaviors.
As for the latter case, modeling support tools like D3WA+
[Sreedharan et al., 2020] have shown how focusing on these
simpler abstractions allows one to more easily isolate errors
in the model. While these approaches do not make the re-
spective unsolvable problem directly solvable, the explana-
tions provided can point towards problematic parts.

The work by Gragera et al. [2023b], in contrast, does fully
fit our definition of model repair, as they attribute unsolvabil-
ity to flawed action models and provide repairs that fix the
issue. That is, their repairs change preconditions and effects
to make the respective problem solvable. Their repairs are
however not “complete” in the sense that they cannot change
action preconditions and cannot delete effects, they only sup-
port adding missed effects (positive and negative), but cannot
change any. Their approach can further still be extended by
allowing to specify multiple unsolvable (or solvable) plan-
ning problems at the same time, all for the same underlying
model, to find one set of repairs for this single model, turning
all problems solvable. Similar to the work by Göbelbecker et
al. [2010], they also solve the problem by an encoding into a
planning problem. They put particular effort into designing a
useful metric that specifies which repairs are preferred. They
also made their technology available in a user-friendly tool
[Gragera et al., 2023a].

Closely related is the earlier work by Aineto et al. [2019],
which supports the same setting as a special case. Their gen-
eral setting is domain learning, where they allow start learn-
ing from scratch, i.e., they do not require an initial partial
model where actions do already show preconditions and ef-
fects. However, they also do support such a partial model
and allow extending it. Furthermore, their input also allows
for (partially) observed state and action traces – but they also
support the special case where only an initial and final state
is being observed, where the action sequence to explain this
still needs to be found. This coincides with finding repairs
for making the problem solvable. Their work also solves the
problem via a compilation to planning problems.

For HTN planning, we are only aware of one approach for
repairing unsolvable problems [Xiao et al., 2020]. In their
problem definition, the authors neither aim for changing the
initial state nor for changing action definitions, but follow an
HTN-specific route. As explained in Section 2, only those
action sequences can be considered solutions that can be gen-
erated from the initial task network by adhering the decompo-
sition methods. Their approach to repair thus aims at making
the problem solvable by completing the task hierarchy, i.e.,
by adding missing actions (from the existing action portfolio)
into the existing methods. They do so by interpreting the un-
solvable (lifted) HTN problem as a TIHTN problem [Geier
and Bercher, 2011; Alford et al., 2015], HTN planning with
task insertion, where one task network can not just be turned

into another by decomposition as explained in Section 2, but
also by inserting actions, thus leading to a larger set of possi-
ble solutions. Once they found a solution to the TIHTN prob-
lem (that now contains additional actions, those that made
the problem solvable), they decide into which decomposition
methods to insert them, thus turning the HTN problem solv-
able. The decision of which method to extend is guided by
a user-specified preference model that tells which method is
more likely to have missing actions.

4.2 Constraint: Include/Exclude Given Plans
In this section, we review papers where the constraints de-
mand that a given set of plans is turned into a solution, or,
likewise, where such a plan is excluded from the solution set
– by appropriate changes to the domain model.

It is noteworthy that all those approaches that turn input
plans into solutions can thus also be used to make unsolv-
able problems solvable. In contrast to the approaches above,
they do however require the additional input of the respec-
tive plan(s). Yet, this also gives more explicit control on how
the repairs look like. It furthermore makes the problem eas-
ier as fixing unsolvable planning problems without input plan
is PSPACE-complete [Göbelbecker et al., 2010], but much
easier if one is provided (as outlined next).

Based on an incomplete (lifted) STRIPS problem, and a set
of plan traces, Zhuo et al. [2013] propose a technique exploit-
ing MAX-SAT solving to turn all provided plans into solu-
tions of the repaired model. In their work, incomplete means
that preconditions or effects might be missing, so their work
can only add those, but not remove any. They also generate
additional macro actions.

The work by Aineto et al. [2019] was already mentioned in
the previous section. In addition to supporting pairs of initial
and final state, they also support partial and full observation
of state and plan traces. As special case, they therefore also
support the provision of plan traces only. They however only
support adding preconditions and effects, not changing any.

Lin and Bercher [2021] analyzed the computational com-
plexity of two problems: Given a propositional classical plan-
ning problem (without negative preconditions2) and a se-
quence of actions, what is the complexity of deciding whether
k repairs (adding or removing preconditions and/or effects)
exist? And: Given a propositional (total-order) HTN prob-
lem and a sequence of actions, do any repairs exist (adding
or removing actions to methods) that make that sequence
reachable from the initial task network? Both problems have
been identified to be NP-complete in general, though special
cases were identified in which the problem becomes tractable.
Their results for total-order HTN problems were later ex-
tended to a partial-order setting (where methods and the ini-
tial task network may be partially ordered) [Lin and Bercher,
2023]. Results remain NP-complete, but further sources of
hardness were identified, making the problem tractable when
eliminated. They now also propose the inclusion of plans
that are required to not be solutions (i.e., that one should not

2Restricting propositional problems to not have negative precon-
ditions is a common assumption as it makes the problem formaliza-
tion and heuristic design easier.



be able to achieve them using the hierarchy) and proved the
problem where both kinds of problems are available to be
NP-hard and in Σp

2, the next level in the polynomial hierar-
chy after NP. Coming back to the first question, k-bounded
repair for classical problems, Lin and Bercher [2021] inves-
tigated the complexity of propositional problems. In their
newest work, they looked at the same problem, but first in
a ground setting, where there is the additional constraint that
preconditions and effects can not be changed arbitrarily any
more, as preconditions and effects have to be compatible
with the action arguments. For example, the action schema
drive(?t, ?l1, ?l2) can only use predicates that use variables
?t, ?l1, and ?l2. This prevents, for example, to add precondi-
tions or effects involving a truck different from ?t, any loca-
tion different from ?l1 and ?l2, or anything not a truck or loca-
tion. For these further constrained problems, Lin et al. [2025]
could show NP-completeness as well. For the fully lifted set-
ting, where only the input plan is ground, but the model is
still lifted, tight bounds remain open as only NEXPTIME-
membership could be shown on top of NP-hardness.

The group also worked on solving these problems in prac-
tice. For classical problems, they proposed an approach based
on computing a sequence of hitting set problems [Lin et al.,
2023]. They argue this to be a natural fit, given that both prob-
lems are NP-complete (noting that the approach aims at find-
ing a minimal number of repairs). Their approach can han-
dle both propositional problems as well as lifted ones. They
can repair both positive and negative preconditions and ef-
fects, including both additions and deletions (though adding
preconditions is never required as this could never make an
action applicable). They can furthermore deal with multi-
ple plans or planning problems referring to the same domain
model. They integrated their system into a plug-in for Visual
Studio Code [Lin et al., 2024b]. Recently, they extended their
algorithm to being able to additionally deal with input plans
that are supposed to not be solutions (motivated by plans that
turned out to not work in the real world) [Lin et al., 2025].

The work by Chen et al. [2024] aligns most closely to the
one by Lin et al. [2025] in that they also correct models based
on failed plans. However, rather than using combinatorial op-
timization to compute a cardinality-minimal repair set, they
exploit the power of LLMs to identify why a failed plan might
have failed, and then update the model accordingly. They
only repair action preconditions (rather than also effects), but
can also create new objects, and even predicates.

Sreedharan and Katz [2023] have looked at how the model
repair process could be part of a reinforcement learning pro-
cess. The proposed method assumes a simulator as its input
as well as an “optimistic” model (written in STRIPS without
negative preconditions), which is one that admits a superset
of all solutions of the true model (represented by the simula-
tor). A diverse planner is used to generate multiple potential
plans, which are then tested against the simulator to see if
they are valid in the true model. When a failure is detected,
the planning model is refined by either adding new precondi-
tions or removing positive or negative effects. The changes
are made so that the current estimate remains consistent with
previously seen failures and successful state transitions.

Whereas all previous works use simplistic models of plan-

ning as defined in Section 2, the work by Lindsay et al. [2020]
builds on PDDL+ [Fox and Long, 2006], a modeling lan-
guage for mixed discrete-continuous planning domains with
complex time-dependent effects. Their approach relies on an
initial hybrid planning problem and observation traces from
sensors of a simulator. A learning method uses the observa-
tions to derive improved expressions for the “processes” in
the domain model, replacing inaccurate process descriptions.

Finally, we turn our attention to repair in hierarchical plan-
ning. The total-order HTN model repair problem defined
and studied theoretically by Lin and Bercher [2021] was later
solved in practice by said group [Lin et al., 2024a]. Although
that problem was proved to be in NP, their work encodes the
repair problem into an HTN planning problem, which is com-
putationally much harder. Using an optimal search algorithm,
their approach guarantees to find the minimal number of re-
pairs. However, their work still has significant restrictions:
They can only add missing actions to methods (similar to the
work by Xiao et al. [2020]), and do not yet support lifted
problems. They also assume applicability of the input plan,
which could be relaxed to allow changing action definitions.

4.3 Constraint: Make Given Plan Optimal
This constraint can be regarded a refinement of the last cri-
terion. Rather than just ensuring that a plan is a solution to
the given problem, one could additionally demand that it is
optimal. This is the usually the requirement behind model
reconciliation explanations [Sreedharan et al., 2021a].

In this setting, the explainee, i.e., the user receiving the ex-
planation, is expected to have a user model that is different
from the model used by the planner to generate the plan be-
ing explained. Here, an explanation consists of identifying
the set of model updates to be applied, such that in the result-
ing model, the plan being explained would be optimal. Many
variants of model reconciliation have been investigated, in-
cluding those where the user model is known [Chakraborti et
al., 2017], where there might be model uncertainty [Sreedha-
ran et al., 2018], where the model might be completely un-
known [Sreedharan et al., 2019], and in cases where there is
a set of users with different beliefs [Sreedharan et al., 2018].

The usual application settings of model reconciliation ex-
planations are those where the planner model corresponds to
the ground truth. However, these techniques have also been
used in settings where this assumption does not hold. These
settings illustrate how these methods could be used for model
repair, as the model updates provided as part of the expla-
nation could be used as a focal point for the user to provide
corrective feedback to the system. This was an approach used
by the RADAR decision-support system [Grover et al., 2020]
that allows for the possibility that the planner model need not
be completely accurate. They assume that the user might
have access to information that the system does not, and as
such, certain parts of their mental models may be a more ac-
curate representation of the true underlying task. As such, the
RADAR system provides its users the ability to override some
model components highlighted by a model-reconciliation ex-
planation, thereby allowing them to perform targeted model
updates. However, this is not to say the user is always right,
as there may be parts of models where the planner has access



to more accurate information. As such, in these cases, the
model reconciliation explanation is treated as being part of a
dialogue where the user and the planning system go back and
forth to establish the validity of different model components.

Mapping model reconciliation back to our definition of the
model repair process, the constraints here could involve en-
suring the validity of the plan being explained and the inva-
lidity of any plans that may be less costly than the plan in
question. Additionally, all model updates are limited to ones
that align with the true planning model.

Extremely closely related to model reconciliation is a
method to generate so-called “lies”, which again are model
updates, whose inclusion in the user model will result in an
updated model where some observed plan is optimal – but
now these updates are differentiated from model reconcili-
ation in that they are identified independently of the agent
model that generated the behavior [Chakraborti and Kamb-
hampati, 2019].

4.4 Constraint: Properties of Solution Space
The next kind of constraint is again related to the last two sec-
tions. Previously, it was requested that specific plans are ex-
cluded from or included into the solution set. Requesting that
a plan is optimal (cf. last section) is also an exclusion criterion
on the solution space as it demands that no shorter or cheaper
solution exist other than the given one. Properties like these
could be generalized further, to allow for arbitrary properties
every solution allowed by a planning problem should satisfy.

One example where more properties are enforced is envi-
ronment design [Zhang et al., 2009]. In this case, the model
is an accurate representation of the real world. Such settings
involve an environment designer who is capable of modify-
ing the world through actions that are not part of the planning
model itself. Consider a planning model capturing a ware-
house navigation task. Here, the model corresponds to how
a robot could navigate through the cluttered warehouse. On
the other hand, the environment designer might be the ware-
house supervisor, who could change the environment by mov-
ing around shelves, something the robot might not be capable
of. Here, the environment designer might want to modify
the environment so as to allow solutions of certain properties
that are currently not possible in the modeled planning prob-
lem. Under environment design, the model repair problem
thus corresponds to finding a set of model updates that will
allow solutions of the desired property.

A popular design problem is that of goal recognition design
[Keren et al., 2020]. Under this problem, the environment
designer needs to identify a set of potential environment edits
that will try to minimize the length of possible shared prefixes
between plans for different goals. Environment design has
also been used for applications like plan recognition [Mirsky
et al., 2017], and to maximize the utility received by an AI
agent [Keren et al., 2019]. An additional requirement placed
on model repair techniques by environment design would be
that any model change identified in these settings needs to
have a corresponding change that can be carried out in the en-
vironment. As such, in many of these works, the approaches
assume access to a set of model updates that can be applied
as part of the model repair process.

5 Assessing (Repaired) Domain Models

The problem of assessing the quality of domain models is a
long-standing one in the field of knowledge engineering for
planning and scheduling. The most general approach is to
identify some properties of a domain model that could define
its inherent quality. Well-known properties have been intro-
duced by McCluskey et al. [2017], but their assessment is
challenging and strongly related to the characteristics of the
target domain. This is complicated for automated model re-
pair as they require quantitative optimization metrics that can
be evaluated automatically. The alternative approach can be
to define aspects of low-quality models [Vallati and Chrpa,
2019], but this can be unfeasible in complex domains. In
a different fashion, work has been done in defining quality
frameworks to support the encoding of high-quality mod-
els [Vallati and McCluskey, 2021], based on the underlying
idea of knowledge engineering that the quality of the process
strongly influences the quality of the final models. When it
comes to assessing repaired domain models, however, it is
usually more relevant to compare the repaired models against
the original one (especially if they were already runnable or
proven, and hence implement a lot of user intent already), or
against alternative refined ones.

In the International Competition on Knowledge Engineer-
ing for Planning and Scheduling (ICKEPS), the organizers
introduced a range of qualitative (e.g., correctness and read-
ability) and quantitative measures (e.g., number of predicates,
arity of predicates) to compare models that address the same
target domain [Chrpa et al., 2017], following the ideas intro-
duced by Shah et al. [2013].

Chrpa et al. [2023] proposed the use of graph edit distance
to assess how syntactically different two models are: in the
context of assessing repaired models, this metric could be
used to prefer repaired models that are as close as possible to
the original one, and to help identify re-usable modules from
models encoding similar dynamics [Lindsay, 2023]. Follow-
ing a similar idea, techniques for performing model repair
have focused on generating repaired models that minimize the
number of modifications with regard to the original model, as
we also saw in several works reviewed in the last section [Lin
and Bercher, 2021; Lin et al., 2023].

Rather than comparing the models syntactically, one could
also compare the solution sets of the respective problems.
For example, adding specific solutions could, depending on
the chosen repair, also exclude other solutions, thus chang-
ing the solution set in potentially unpredicted ways. This
makes more precise requirements desirable, such as making
sure that the solution set only increases. Comparing solu-
tion sets can however be very hard computationally. For
example, checking whether one regular language is a su-
perset of another is in general PSPACE-complete [Hovland,
2012], noting that classical planning problems describe reg-
ular languages [Höller et al., 2014; Höller et al., 2016;
Lin and Bercher, 2022]. For hierarchical planning, it is
even harder. For example, checking whether two context-free
languages have an infinite intersection is even undecidable
[Hopcroft and Ullman, 1979], noting that total-order HTN
problems are context-free [Höller et al., 2014].



Finally, Large Language Models can also be considered for
assessing the quality of repaired models: Caglar et al. [2024]
introduced the idea of the likelihood of model updates, which
basically embodies the intuition that a modification makes
sense according to the issues to be repaired.

6 Conclusion

Knowledge engineering has long been recognized as a chal-
lenging and critical task in the AI planning community – es-
pecially for bridging the gap between academic research and
real-world applications of planning technology.

In this survey, we focused on model repair: the task of
modifying an existing model to improve its accuracy or com-
pleteness so it satisfies certain desired properties. We con-
trasted this with model learning, which typically aims to con-
struct a domain model from scratch using input data such as
plan or state traces. While model learning often requires sub-
stantial training data, model repair can be applied later in the
development process and may work with far less input. We
also proposed this distinction between domain model learn-
ing and repair, arguing that the former can be viewed as a
specialized subset of the latter.

We reviewed existing work that falls within our definition
of model repair, including work that might at first glance not
be recognized as technology for modeling support. We found
that most work focuses on making unsolvable problems solv-
able or fixing models based on plan traces. We can observe
that almost all works have been developed for the simplest
language level, not offering repair support for more expres-
sive language features, although several are often used in
practice. Generally, repair still seems to be in its early stages:
Even for given input plans (where the most research exists), a
lot of further research could be envisioned, such as providing
a general description of which solutions are allowed (e.g., us-
ing regular expressions or formal grammars) rather than ex-
plicitly listing finitely many, allowing to infer new actions
(bringing it closer to domain learning), or changing action
schema parameters. Also, many more possible constraints to
be satisfied by the model would be conceivable, such as mu-
tex relations or their generalization to LTL constraints – to
name just two examples. Finally, research on how to assess
repaired planning models, and how to integrate such metrics
into the repair process is also still at its infancy. Most repair
approaches therefore simply aim at minimizing the number of
repairs, which is simple to evaluate and optimize, yet might
not lead to the model with the most desired properties.

Acknowledgments

Pascal Bercher is the recipient of an Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA), project number DE240101245, funded by the
Australian Government. Sarath Sreedharan’s research is sup-
ported in part by grant NSF 2303019. Mauro Vallati was sup-
ported by a UKRI Future Leaders Fellowship [grant number
MR/Z00005X/1].

References
[Aineto et al., 2018] Diego Aineto, Sergio Jiménez, and Eva

Onaindia. Learning strips action models with classical
planning. In Proc. of ICAPS, pages 399–407. AAAI Press,
2018.

[Aineto et al., 2019] Diego Aineto, Sergio Jiménez Celorrio,
and Eva Onaindia. Learning action models with minimal
observability. Artificial Intelligence, pages 104–137, 2019.

[Alcázar and Torralba, 2015] Vidal Alcázar and Álvaro Tor-
ralba. A reminder about the importance of computing and
exploiting invariants in planning. In Proc. of ICAPS, pages
2–6. AAAI Press, 2015.

[Alford et al., 2015] Ron Alford, Pascal Bercher, and David
Aha. Tight bounds for HTN planning with task insertion.
In Proc. of IJCAI, pages 1502–1508. AAAI Press, 2015.

[Arora et al., 2018] Ankuj Arora, Humbert Fiorino, Damien
Pellier, Marc Métivier, and Sylvie Pesty. A review of
learning planning action models. The Knowledge Engi-
neering Review, 33:1–25, 2018.

[Bacchus and Kabanza, 1998] Fahiem Bacchus and Frodu-
ald Kabanza. Planning for temporally extended goals. An-
nals of Mathematics and Artificial Intelligence, 22:5–27,
1998.

[Balyo et al., 2024] Tomáš Balyo, Martin Suda, Lukáš
Chrpa, Dominik Šafránek, Stephan Gocht, Filip Dvořák,
Roman Barták, and G. Michael Youngblood. Planning do-
main model acquisition from state traces without action
parameters. In Proc. of KR, pages 812–822. IJCAI, 2024.

[Bercher et al., 2019] Pascal Bercher, Ron Alford, and
Daniel Höller. A survey on hierarchical planning – one
abstract idea, many concrete realizations. In Proc. of IJ-
CAI, pages 6267–6275. IJCAI, 2019.

[Caglar et al., 2024] Turgay Caglar, Sirine Belhaj, Tathagata
Chakraborti, Michael Katz, and Sarath Sreedharan. Can
LLMs fix issues with reasoning models? towards more
likely models for AI planning. In Proc. of AAAI, pages
20061–20069. AAAI Press, 2024.

[Chakraborti and Kambhampati, 2019] Tathagata Chakra-
borti and Subbarao Kambhampati. (when) can AI bots
lie? In Proc. of AIES, pages 53–59. ACM, 2019.

[Chakraborti et al., 2017] Tathagata Chakraborti, Sarath
Sreedharan, Yu Zhang, and Subbarao Kambhampati. Plan
explanations as model reconciliation: Moving beyond ex-
planation as soliloquy. In Proc. of IJCAI, pages 156–163.
IJCAI, 2017.

[Chen et al., 2024] Guanqi Chen, Lei Yang, Ruixing Jia, Zhe
Hu, Yizhou Chen, Wei Zhang, Wenping Wang, and Jia
Pan. Language-augmented symbolic planner for open-
world task planning. In Proc. of RSS, 2024.

[Chrpa et al., 2017] Lukáš Chrpa, Thomas L McCluskey,
Mauro Vallati, and Tiago Vaquero. The fifth interna-
tional competition on knowledge engineering for plan-
ning and scheduling: Summary and trends. AI Magazine,
38(1):104–106, 2017.



[Chrpa et al., 2020] Lukáš Chrpa, Roman Barták, Jindřich
Vodrážka, and Marta Vomlelová. Attributed transition-
based domain control knowledge for domain-independent
planning. IEEE Transactions on Knowledge and Data En-
gineering, pages 1–13, 2020.

[Chrpa et al., 2023] Lukáš Chrpa, Carmine Dodaro, Marco
Maratea, Marco Mochi, and Mauro Vallati. Comparing
planning domain models using answer set programming.
In Proc. of JELIA, pages 227–242. Springer, 2023.

[Fišer and Komenda, 2018] Daniel Fišer and Antonı́n
Komenda. Fact-alternating mutex groups for classical
planning. Journal of Artificial Intelligence Research,
61:475–521, 2018.

[Fox and Long, 2006] Maria Fox and Derek Long. Mod-
elling mixed discrete-continuous domains for planning.
Journal of Artificial Intelligence Research, 27(1):235–297,
2006.

[Geier and Bercher, 2011] Thomas Geier and Pascal
Bercher. On the decidability of HTN planning with task
insertion. In Proc. of IJCAI, pages 1955–1961. AAAI
Press, 2011.

[Göbelbecker et al., 2010] Moritz Göbelbecker, Thomas
Keller, Patrick Eyerich, Michael Brenner, and Bernhard
Nebel. Coming up with good excuses: What to do when
no plan can be found. In Proc. of ICAPS, pages 81–88.
AAAI Press, 2010.

[Gragera et al., 2023a] Alba Gragera, Raquel Fuentetaja,
Ángel Garcı́a-Olaya, and Fernando Fernández. PDDL do-
main repair: Fixing domains with incomplete action ef-
fects. In ICAPS 2023 System Demonstrations, 2023.

[Gragera et al., 2023b] Alba Gragera, Raquel Fuentetaja,
Ángel Garcı́a Olaya, and Fernando Fernández. A planning
approach to repair domains with incomplete action effects.
In Proc. of ICAPS, pages 153–161. AAAI Press, 2023.

[Grover et al., 2020] Sachin Grover, Sailik Sengupta, Tatha-
gata Chakraborti, Aditya Prasad Mishra, and Subbarao
Kambhampati. Radar: automated task planning for proac-
tive decision support. Human-Computer Interaction, 35(5-
6):387–412, 2020.

[Grundke et al., 2024] Claudia Grundke, Gabriele Röger,
and Malte Helmert. Formal representations of classical
planning domains. In Proc. of ICAPS, pages 239–248.
AAAI Press, 2024.

[Haslum et al., 2019] Patrik Haslum, Nir Lipovetzky,
Daniele Magazzeni, and Christian Muise. An Introduction
to the Planning Domain Definition Language. Morgan &
Claypool, 2019.

[Helmert, 2006] Malte Helmert. The fast downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Herzig et al., 2024] Andreas Herzig, Viviane Menezes,
Leliane Nunes de Barros, and Renata Wassermann. On
the revision of planning tasks. In Proc. of ECAI, pages
435–440. IOS Press, 2024.

[Höller et al., 2014] Daniel Höller, Gregor Behnke, Pascal
Bercher, and Susanne Biundo. Language classification of
hierarchical planning problems. In Proc. of ECAI, pages
447–452. IOS Press, 2014.

[Höller et al., 2016] Daniel Höller, Gregor Behnke, Pascal
Bercher, and Susanne Biundo. Assessing the expressiv-
ity of planning formalisms through the comparison to for-
mal languages. In Proc. of ICAPS, pages 158–165. AAAI
Press, 2016.

[Höller et al., 2020] Daniel Höller, Gregor Behnke, Pascal
Bercher, Susanne Biundo, Humbert Fiorino, Damien Pel-
lier, and Ron Alford. HDDL: An extension to PDDL for
expressing hierarchical planning problems. In Proc. of
AAAI, pages 9883–9891. AAAI Press, 2020.

[Hopcroft and Ullman, 1979] John E. Hopcroft and Jef-
frey D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Addison-Wesley, 1979.

[Hovland, 2012] Dag Hovland. The inclusion problem for
regular expressions. Journal of Computer and System Sci-
ences, 78:1795–1813, 2012.

[Jilani, 2020] Rabia Jilani. Automated domain model learn-
ing tools for planning. In Vallati and Kitchin [2020], pages
21–46.

[Jiménez et al., 2012] Sergio Jiménez, Tomás De La Rosa,
Susana Fernández, Fernando Fernández, and Daniel Bor-
rajo. A review of machine learning for automated plan-
ning. Knowledge Engineering Review, 27(4):433–467,
2012.

[Keren et al., 2019] Sarah Keren, Luis Enrique Pineda,
Avigdor Gal, Erez Karpas, and Shlomo Zilberstein. Ef-
ficient heuristic search for optimal environment redesign.
In Proc. of ICAPS, pages 246–254. AAAI Press, 2019.

[Keren et al., 2020] Sarah Keren, Avigdor Gal, and Erez
Karpas. Goal recognition design – survey. In Proc. of
IJCAI, pages 4847–4853. IJCAI, 2020.

[Krarup et al., 2024] Benjamin Krarup, Amanda Coles,
Derek Long, and David E Smith. Explaining plan qual-
ity differences. In Proc. of ICAPS, pages 324–332. AAAI
Press, 2024.

[Lin and Bercher, 2021] Songtuan Lin and Pascal Bercher.
Change the world – how hard can that be? on the com-
putational complexity of fixing planning models. In Proc.
of IJCAI, pages 4152–4159. IJCAI, 2021.

[Lin and Bercher, 2022] Songtuan Lin and Pascal Bercher.
On the expressive power of planning formalisms in con-
junction with LTL. In Proc. of ICAPS, pages 231–240.
AAAI Press, 2022.

[Lin and Bercher, 2023] Songtuan Lin and Pascal Bercher.
Was fixing this Really that hard? On the complexity of
correcting htn domains. In Proc. of AAAI, pages 12032–
12040. AAAI Press, 2023.

[Lin et al., 2023] Songtuan Lin, Alban Grastien, and Pascal
Bercher. Towards automated modeling assistance: An ef-
ficient approach for repairing flawed planning domains. In
Proc. of AAAI, pages 12022–12031. AAAI Press, 2023.



[Lin et al., 2024a] Songtuan Lin, Daniel Höller, and Pas-
cal Bercher. Modeling assistance for hierarchical plan-
ning: An approach for correcting hierarchical domains
with missing actions. In Proc. of SoCS, pages 55–63.
AAAI, 2024.

[Lin et al., 2024b] Songtuan Lin, Mohammad Yousefi, and
Pascal Bercher. A visual studio code extension for au-
tomatically repairing planning domains. In ICAPS 2024
Demonstrations, 2024.

[Lin et al., 2025] Songtuan Lin, Alban Grastien, Rahul
Shome, and Pascal Bercher. Told you that will not work:
Optimal corrections to planning domains using counter-
example plans. In Proc. of AAAI. AAAI Press, 2025.

[Lindsay et al., 2020] Alan Lindsay, Santiago Franco, Ru-
biya Reba, and Thomas L. McCluskey. Refining process
descriptions from execution data in hybrid planning do-
main models. In Proc. of ICAPS, pages 469–477. AAAI
Press, 2020.

[Lindsay, 2023] Alan Lindsay. On using action inheritance
and modularity in PDDL domain modelling. In Proc. of
ICAPS, pages 259–267. AAAI Press, 2023.

[Magnaguagno et al., 2020] Maurı́cio C. Magnaguagno, Ra-
mon Fraga Pereira, Martin D. Móre, and Felipe
Meneguzzi. Web planner: A tool to develop, visualize,
and test classical planning domains. In Vallati and Kitchin
[2020], pages 209–227.

[McCluskey and Porteous, 1997] T. L. McCluskey and J. M.
Porteous. Engineering and compiling planning domain
models to promote validity and efficiency. Artificial In-
telligence, 95:1–65, 1997.

[McCluskey et al., 2002] T. L. McCluskey, N. E. Richard-
son, and R. M. Simpson. An interactive method for induc-
ing operator descriptions. In Proc. of AIPS, pages 121–
130. AAAI Press, 2002.

[McCluskey et al., 2017] Thomas L McCluskey, Tiago S Va-
quero, and Mauro Vallati. Engineering knowledge for au-
tomated planning: Towards a notion of quality. In Proc. of
K-CAP, pages 1–8. ACM, 2017.

[Mirsky et al., 2017] Reuth Mirsky, Roni Stern, Ya’akov
(Kobi) Gal, and Meir Kalech. Plan recognition design. In
Proc. of AAAI, pages 4971–4972. AAAI Press, 2017.

[Muise and Lipovetzky, 2020] Christian Muise and Nir
Lipovetzky. KEPS book: Planning.domains. In Vallati
and Kitchin [2020], pages 91–105.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
In Proc. of SFCS, pages 46–57. IEEE, 1977.

[Shah et al., 2013] Mohammad Munshi Shahin Shah, Lukáš
Chrpa, Diane E Kitchin, and Mauro Vallati. Exploring
knowledge engineering strategies in designing and mod-
elling a road traffic accident management domain. In Proc.
of IJCAI, pages 2373–2379. AAAI Press, 2013.

[Sreedharan and Katz, 2023] Sarath Sreedharan and Michael
Katz. Optimistic exploration in reinforcement learning us-
ing symbolic model estimates. In NeurIPS, pages 34519–
34535. Curran Associates, Inc., 2023.

[Sreedharan et al., 2018] Sarath Sreedharan, Tathagata
Chakraborti, and Subbarao Kambhampati. Handling
model uncertainty and multiplicity in explanations via
model reconciliation. In Proc. of ICAPS, pages 518–526.
AAAI Press, 2018.

[Sreedharan et al., 2019] Sarath Sreedharan, Alberto Olmo
Hernandez, Aditya Prasad Mishra, and Subbarao Kamb-
hampati. Model-free model reconciliation. In Proc. of
IJCAI, pages 587–594. IJCAI, 2019.

[Sreedharan et al., 2020] Sarath Sreedharan, Tathagata
Chakraborti, Christian Muise, Yasaman Khazaeni, and
Subbarao Kambhampati. – D3WA+ – a case study of
XAIP in a model acquisition task for dialogue planning.
In Proc. of ICAPS, pages 488–497. AAAI Press, 2020.

[Sreedharan et al., 2021a] Sarath Sreedharan, Tathagata
Chakraborti, and Subbarao Kambhampati. Founda-
tions of explanations as model reconciliation. Artificial
Intelligence, 301:103558, 2021.

[Sreedharan et al., 2021b] Sarath Sreedharan, Siddharth Sri-
vastava, and Subbarao Kambhampati. Using state abstrac-
tions to compute personalized contrastive explanations for
AI agent behavior. Artificial Intelligence, 301:103570,
2021.

[Strobel and Kirsch, 2020] Volker Strobel and Alexandra
Kirsch. MyPDDL: Tools for efficiently creating PDDL do-
mains and problems. In Vallati and Kitchin [2020], pages
67–90.

[Vallati and Chrpa, 2019] Mauro Vallati and Lukáš Chrpa.
On the robustness of domain-independent planning en-
gines: the impact of poorly-engineered knowledge. In
Proc. of K-CAP, pages 197–204. ACM, 2019.

[Vallati and Kitchin, 2020] Mauro Vallati and Diane Kitchin,
editors. Knowledge Engineering Tools and Techniques for
AI Planning. Springer, 2020.

[Vallati and McCluskey, 2021] Mauro Vallati and Thomas
Leo McCluskey. A quality framework for automated plan-
ning knowledge models. In Proc. of ICAART, pages 635–
644. SciTePress, 2021.

[Vaquero et al., 2007] Tiago Stegun Vaquero, Victor
Romero, Flavio Tonidandel, and José Reinaldo Silva.
itSIMPLE2.0: An integrated tool for designing planning
domains. In Proc. of ICAPS, pages 336–343. AAAI Press,
2007.

[Xiao et al., 2020] Zhanhao Xiao, Hai Wan, Hankui Hankz
Zhuo, Andreas Herzig, Laurent Perrussel, and Peilin Chen.
Refining HTN methods via task insertion with preferences.
In Proc. of AAAI, pages 10009–10016. AAAI Press, 2020.

[Zhang et al., 2009] Haoqi Zhang, Yiling Chen, and
David C. Parkes. A general approach to environment de-
sign with one agent. In Proc. of IJCAI, pages 2002–2014.
IJCAI, 2009.

[Zhuo et al., 2013] Hankz Hankui Zhuo, Tuan Nguyen, and
Subbarao Kambhampati. Refining incomplete planning
domain models through plan traces. In Proc. of IJCAI,
pages 2451–2457. AAAI Press, 2013.


	Introduction
	Planning Formalism
	On Model Repair vs. Model Acquisition
	Model Acquisition
	Model Repair

	Model Repair Approaches
	Constraint: Make Problem(s) Solvable
	Constraint: Include/Exclude Given Plans
	Constraint: Make Given Plan Optimal
	Constraint: Properties of Solution Space

	Assessing (Repaired) Domain Models
	Conclusion

