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Abstract

Hardness of modeling a planning domain is a major obsta-
cle for making automated planning techniques accessible. We
developed a tool that helps modelers correct domains based
on available information such as the known feasibility or in-
feasibility of certain plans. Designing model repair strategies
that are capable of repairing flawed planning domains auto-
matically has been explored in previous work to use posi-
tive plans (invalid in the given (flawed) domain but feasible
in the “true” domain). In this work, we highlight the impor-
tance of and study counter-example negative plans (valid in
the given (flawed) domain but infeasible in the “true” do-
main). Our approach automatically corrects a domain by find-
ing an optimal repair set to the domain which turns all nega-
tive plans into non-solutions, in addition to making all posi-
tive plans solutions. Experiments indicate strong performance
in the fast-downward benchmark suite with random errors. A
handcrafted benchmark with domain flaws inspired by some
practical applications also motivates the method’s efficacy.

Introduction
Planning is concerned with finding a sequence of actions that
achieves a certain goal. Many theoretical investigations (e.g.,
see the work by Bylander (1994), by Erol, Nau, and Sub-
rahmanian (1995), and by Erol, Hendler, and Nau (1996))
have been done and many practical approaches (e.g., see
the work by Bonet and Geffner (2001), by Hoffmann and
Nebel (2001), and by Helmert (2006)) have been developed
for planning. The applications of planning are however still
rare in practice, especially for areas outside academia. We
argue that this is because modeling a practical problem as a
planning problem is difficult and error-prone, which requires
a modeler to be an expert not only in planning but in the area
related to the problem to be modeled. As a result, tools for
providing modeling support are needed for the purpose of
making planning techniques more accessible.

The functionalities of existing tools for modeling assis-
tance range from providing support for editing files which
describe planning problems (Magnaguagno et al. 2020;
Muise 2016; Strobel and Kirsch 2020; Vaquero et al. 2013)
to more advanced features like automatically fixing errors
in a planning domain (Gragera et al. 2023; Lin, Grastien,
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and Bercher 2023; Sreedharan et al. 2020; Lin, Höller, and
Bercher 2024).

In particular, motivated by the scenario where there can
be positive plans – feasible plans that might be invalid in
a flawed domain – Lin, Grastien, and Bercher (2023) pro-
posed an approach for correcting flaws by finding repairs to
the domain turning all positive plans into solutions. Repairs
to a domain refer to modifications to actions’ preconditions
and effects, which fully characterize a domain. While this
scenario has its applications (in particular since modeling
errors can lead to the exclusion of intended solutions, which
in an extreme case may even render problems unsolvable
(Gragera et al. 2023)), the opposite situation may also arise.
That is, due to modeling mistakes, models may allow the
generation of plans that are solutions in these (flawed) mod-
els while they are inapplicable in the real world (i.e., the
“true” model). We call such plans (counter-example) nega-
tive plans. We argue that in many scenarios, negative plans
are as vital as positive ones because they reflect real world
constraints that are not adequately modeled, causing plans to
work in the model but not the real world. In motivating ap-
plications like robotics, domain models are often used as ab-
stractions for tasks (Dantam et al. 2018; Garrett et al. 2021)
but are flawed when compared to a true domain containing
motion planning feasibility (Kavraki and LaValle 2008), i.e.,
feasible plans in the domain might be infeasible for the robot
to execute. This paper serves as a promising step towards an
effective model repair strategy to correct flawed domains us-
ing counter-examples of both negative and positive plans.

The key contribution of the paper is an approach which
takes as input a planning domain, a set of positive as well
as negative plans, and outputs a cardinality-minimum set of
repairs to the domain which turn all positive plans into so-
lutions and all negative ones into non-solutions. We want
to emphasize that our technique is highly general in the
sense that it supports repairing lifted domains (in contrast
to ground planning, where the similar problem is concep-
tually much simpler (Erol, Nau, and Subrahmanian 1995;
Erol, Hendler, and Nau 1996)) and supports repairing both
negative and positive preconditions, as well as negative and
positive effects – all of which can be specified in the promi-
nent PDDL language (Fox and Long 2003) (although we are
not able to change the parameter list of actions). Finding a
minimum repair set favors preserving as much information



as possible in the given domain. Further, we assume that, for
each negative plan, the action that is inapplicable is given ex-
plicitly. We claim that this is a reasonable setting that arises
in some motivating applications like robotics where a plan
is simulated or executed on a robot. For instance, in task and
motion planning, each action motion feasibility is checked
using a motion planner (i.e., when the robot is unable to pick
up an object, the corresponding pick action fails).

Experimental results demonstrate strong empirical perfor-
mance of the proposed approach across International Plan-
ning Competition (IPC) domains with randomized errors.
Specifically, repairs found by the approach in the experi-
ments have high precision, namely, most of them can suc-
cessfully fix flaws in a domain. In particular, the repairs were
successful in a reasonable time. We also created benchmarks
by introducing bespoke flaws to BlocksWorld and Gripper
domains. These scenarios are inspired by challenges often
introduced in motivating applications in robotics (Dantam
et al. 2018; Garrett et al. 2021). Flaws in those domains
may occur in specific ways, which is what we tried to em-
ulate in the motivating bespoke benchmarks. The proposed
approach could recover all introduced flaws, showing that
our approach might be a feasible first step towards future
robotics applications.

The rest of the paper is organized as follows: We first in-
troduce the planning formalism we used and the formaliza-
tion of the domain repair problem. After that, we discuss the
technical details of our approach. Lastly, we present our ex-
perimental results.

Planning Formalism
We consider a lifted formalism. A lifted planning domain D
is defined over a set V of variables and is a tuple (P,A). P
is a set of predicates. Each predicate p ∈ P is of the form
P (v1|t1 , · · · , vn|tn) for some n ∈ N0 (N0 = N ∪ {0}) in
which P is the unique name of the predicate, and for each
1 ≤ i ≤ n, vi ∈ V is a variable, and ti is the type as-
sociated with the variable vi. vi|ti represents the restriction
that the variable vi can only be mapped to an object of the
type ti. We will discuss this in more detail later on. A is
a set of action schemas. Similar to a predicate, an action
schema a ∈ A is again of the form A(v1|t1 , · · · , vn|tn)
(n ∈ N0) where A is the unique action name. An action
schema a is characterized by its positive preconditions, neg-
ative preconditions, positive effects, and negative effects,
written prec+(a), prec−(a), eff+(a), and eff−(a), re-
spectively, each of which is a set of predicates. We can view
each prec+, prec−, eff+, and eff− as a function mapping
each action schema to the respective set of predicates.

Definition 1. Let a = A(v1|t1 , · · · , vn|tn) be an action
schema and p = P (v′1|t′1 , · · · , v′m|t′m) a predicate. We say
that p is compatible with a if for any 1 ≤ i ≤ m, there exists
a j with 1 ≤ j ≤ n such that v′i = vj and t′i = tj . In other
words, every parameter of p is also a parameter of a.

In particular, if a predicate p is in an action schema a’s
preconditions or effects, then p must be compatible with a.

A planning task T with respect to a planning domain is a
tuple (O, sI , g). O is a finite set of objects. Each object o ∈

O has a type. For convenience, we use t[o] to indicate the
type of the object o. A predicate p = P (v1|t1 , · · · , vn|tn) in
P can be grounded to a proposition p by a variable substitu-
tion function ϱ : V → O which maps each vi (1 ≤ i ≤ n) to
an object, written p = ϱJpK. In particular, we say that p is a
valid grounding of p under ϱ iff for each i with 1 ≤ i ≤ n,
ti = t[ϱJviK]. Similarly, an action schema a ∈ A can also
be grounded to an action a by a variable substitution func-
tion ϱ, written a = ϱJaK. Note that when an action schema
is grounded with a variable substitution function ϱ, all pred-
icates in its precondition and effects are also grounded un-
der ϱ simultaneously. We again use prec+(a), prec−(a),
eff+(a), and eff−(a) to denote the positive preconditions,
negative preconditions, positive effects, and negative effects
of a grounded action a, respectively. sI and g are called the
initial state and the goal description each of which is a set
of propositions. A planning problem Π is a pair (D, T ) of
a domain and a task. Note that a domain can be paired with
different tasks, resulting in different planning problems.

In planning, a state is a set of propositions. A grounded
action a is said to be applicable in a state s iff prec+(a) ⊆ s
and prec−(a) ∩ s = ∅. If action a is applicable in state
s, then applying a in s results in a new state s′ = (s \
eff−(a)) ∪ eff+(a). We use s →a s′ to indicate that a
is applicable in s, and s′ is obtained by applying a in s. A
plan (i.e., an action sequence) π = ⟨a1 · · · an⟩ is a solution
to a planning problem iff for each 1 ≤ i ≤ n, there exists
an action schema a ∈ A and a valid variable substitution
function ϱ with ai = ϱJaK, and there exists a state sequence
⟨s0 · · · sn⟩ such that s0 = sI , g ⊆ sn, and si−1 →ai

si for
each 1 ≤ i ≤ n.

Problem Formulation
Next we formalize the domain repair problem. The formal-
ization is based on the one by Lin, Grastien, and Bercher
(2023) to a large extent, who formalized the problem for
positive plans only. We add the capability to express and re-
pair negative plans. Since we want to repair a flawed domain,
we first define the notion of atomic repairs.

Definition 2. Let D be a planning domain. We define
an atomic repair as rJa,p, c, opK where a is an action
schema, p is a predicate which is compatible with a, c ∈
{prec+, prec−, eff+, eff−}, and op ∈ {+,−}. The re-
striction on the parameters of p requires that every param-
eter of p is also a parameter of a.

The interpretation of an atomic repair rJa,p, c, opK is as
follows: a is the action schema that is to be modified. p is the
predicate that is to be inserted into (if op = +) or removed
from (if op = −) the respective precondition or effects of a
controlled by c. As a special case, if r is such that 1) op = −
and p is not in the respective component of a specified by c,
or 2) op = + and p is already in the component c of a, then
c(a) is not changed.

When applying an atomic repair r to an action schema a,
what is actually being modified is the output of the function
prec+, prec−, eff+, or eff− on the input a. That is, if
a′ is obtained by applying a repair r = rJa,p, c, opK to an
action schema a, we in fact still have a′ = a, because the



action schema itself is not modified, while the value of c(a)
is now changed by r. This observation is crucial because it
witnesses the validity of having multiple repairs working on
the same action schema.

Given two domains D and D′ together with an atomic re-
pair r = rJa,p, c, opK, we use the notation D ⇒r D′ to
denote that D′ is obtained by applying r to D.

Next we define how a domain can be modified by a set δ
of atomic repairs. To this end, we first define a valid set of
repairs with respect to a domain as follows.
Definition 3. A repair set δ with respect to a domain is valid
if and only if there does not exist two repairs r, r′ ∈ δ such
that one undoes the effect of the other. Two repairs r and r′

with r = rJa,p, c, opK and r′ = rJa′,p′, c′, op′K undo the
effect of each other if a = a′, p = p′, c = c′, and op ̸= op′.

It is easy to verify that the following proposition holds:
Proposition 1. Let D be a domain and δ a valid repair set
to D. Applying the repairs in δ in an arbitrary order results
in the same modified domain D′.

This result thus allows us to use the notation D ⇒∗
δ D′ to

indicate that the domain D′ is obtained from D by applying
a valid repair set δ. Lastly, we could formulate our extended
domain repair problem.
Definition 4. We define the domain repair problem as a tu-
ple R = (D,T) where D is a planning domain, and T is
a set {T1, · · · ,Tn} for some n ∈ N. Each Ti is a tuple
(Ti,Pi,Ei) where Ti is a planning task defined with respect
to the domain D, Pi is a set of positive plans with respect to
the planning problem Πi = (D, Ti), and Ei is a set of tuples{
(π−

1 , i1), · · · , (π−
j , ij)

}
for some j ∈ N where for each k

with 1 ≤ k ≤ j, π−
k is a negative plan (i.e., a solution) to

Πi, and ik is a number smaller or equal to the length of π−
k .

A solution to R is a valid repair set δ with D ⇒∗
δ D′ such

that for all 1 ≤ i ≤ n, every plan π+ ∈ Pi is a solution
to the problem Π′

i = (D′, Ti), and every plan π−
k ∈ Ei

satisfies the following criterion: It is not a solution to Π′
i,

and its ikth action is the first inapplicable action.
As mentioned earlier, in this paper, we are aiming at find-

ing an optimal solution (i.e., a cardinality-minimum set of
repairs) to a domain repair problem, which is also what Lin,
Grastien, and Bercher (2023) did in their work. Note that
there can exist more than one optimal solution to a domain
repair problem. Furthermore, it has been shown by Lin and
Bercher (2021) that the task of finding an optimal solution to
a domain repair problem with only positive plans is already
NP-complete in the grounded setting (a grounded planning
problem is a special case of a planning problem in which
every predicate and every action schema are 0-arity). Here,
we would like to strengthen this result by showing that even
with only negative plans, it is also NP-complete to find an
optimal solution to a grounded domain repair problem.

To this end, we first rephrase the task of finding an optimal
solution to a domain repair problem as a decision problem
called k-bounded domain repair problem as follows:
Definition 5. Let R be a domain repair problem and k ∈ N,
the k-bounded domain repair problem is to decide whether
there exists a solution δ to R with |δ| ≤ k.

Theorem 2. The k-bounded domain repair problem is NP-
complete in the grounded setting. This holds even in the case
where no positive plans are given.

Proof. Membership: Let R = (D, {T1, · · · ,Tn}) be a do-
main repair problem with Ti = (Ti, ∅,Ei) for each 1 ≤ i ≤
n. We can guess and verify a repair set δ to decide whether
it is a solution to R. Note that |δ| is bounded by the minimal
number between k and κ in which κ is the total number of
repairs needed to empty all actions’ effects and to add all
propositions to all actions’ preconditions. Note that κ is a
polynomial with respect to the encoding size of R because
D is grounded, and hence, δ can be guessed in polynomial
time. Since verifying whether every negative plan is not a so-
lution in D′ with D ⇒∗

δ D′ can also be done in polynomial
time, membership thus follows.

Hardness: We reduce from the minimal hitting set prob-
lem, which is to decide, given a set of sets Γ = {γ1, · · · , γn}
and a q ∈ N, whether there exists a set θ with |θ| ≤ q such
that θ ∩ γ ̸= ∅ for all γ ∈ Γ. Let Ω =

⋃
γ∈Γ γ. To en-

code this problem, we construct the domain D = (P,A) as
follows: For each element e ∈ Γ, we construct a proposi-
tion pe so that P = {pe | e ∈ Ω} ∪ {pg} where pg is just
a dummy proposition. A is consisted of sole one action a
which has no preconditions and negative effects and has only
one positive effect pg . Then for each γi ∈ Γ, we construct a
Ti = (Ti, ∅,Ei) with Ti = (∅, {pe | e ∈ Ω \ γi} , {pg}) and
Ei = {(⟨a⟩, 1)}, namely, each negative plan solely consists
of the action a. Note that for each problem (D, Ti), to make
a be inapplicable in the initial state, at least one proposition
from the set {pe | e ∈ γi} must be inserted to the precon-
ditions of a. This thus simulates the constraint that at least
one element in γi must be hitted. Thus, Γ has a hitting set θ
with |θ| ≤ q iff the constructed domain repair problem has
a solution δ with |δ| ≤ q. Hardness thus follows.

Since the grounded setting is a special case of the lifted
one, we can obtain NP-hardness of the problem in the lifted
setting as a simple corollary. Note that NP-membership
however might not hold in the lifted setting because when
inserting a predicate to an action schema, there is an expo-
nential number of mappings between the predicate’s param-
eters and the action schema’s parameters. Concretely, for an
n-arity action schema a and an m-arity predicate p, there
are O(mn) possibilities to add p to a if all the parameters
of a and of p are of the same type.

Corollary 3. The k-bounded domain repair problem in the
lifted setting is NP-hard and is in NEXPTIME.

Repairing Flawed Domains
We move on to discuss how to find an optimal solution to the
domain repair problem. Since we will extend the approach
by Lin, Grastien, and Bercher (2023) (which can only deal
with positive plans), we shall first briefly present the basic
idea of their approach.

Basic Algorithm The approach is based upon the diagno-
sis algorithm (Reiter 1987; Slaney 2014). Specifically, given



Algorithm 1: A general template for the algorithm finding a
cardinality-minimum set of repairs.

Input: A domain repair problem R = (D,T)
Output: A cardinality-minimal set of repairs δ to D

1: Φ← ∅ ▷ The set of computed conflicts
2: while True do
3: δ ← a minimum hitting set of Φ
4: if δ is a solution to R then
5: return δ
6: ▷ Procedure for computing new conflicts
7: Θ← EXTRACTCONFLICTS(δ, R)
8: Φ← Φ ∪Θ
9: procedure EXTRACTCONFLICTS(δ, R)

10: Θ← ∅
11: for all Rs = (D, (T , {π+} , ∅)) in R do
12: ▷ Computing a conflict for a positive plan
13: (ϕ, φ)← CONFPOS(δ, Rs)
14: Θ← Θ ∪ {(ϕ, φ)}
15: for all Rs = (D, (T , ∅, {(π−, j)})) in R do
16: ▷ Computing a conflict for a negative plan
17: (ϕ, φ)← CONFNEG(δ, Rs)
18: Θ← Θ ∪ {(ϕ, φ)}
19: return Θ

a domain repair problem (with only positive plans), the algo-
rithm finds a cardinality-minimum repair set δ∗ ⊆ ∆ (where
∆ is the set of all atomic repairs) that can turn all positive
plans into solutions. It does so by iteratively computing a set
Φ of simple and complex conflicts. A simple conflict (Reiter
1987) is a set φ of repairs such that if none of them are ap-
plied, then at least one positive plans will not be a solution.
That is, at least one repair in φ must be applied in order to
solve the problem. A complex conflict (Struss and Dressler
1989) is a tuple (ϕ, φ) each of which is a set of repairs. The
interpretation of a complex conflict is that if all repairs in ϕ
are executed, at least one repair in φ should be applied in
order to solve the problem. We could view a simple conflict
φ as a special case of a complex conflict (ϕ, φ) with ϕ = ∅.
Thus, for convenience, we will use the term conflicts to refer
to complex conflicts in the paper. It follows from the defi-
nition of conflicts that the cardinality-minimum set δ∗ must
be a minimum hitting set of Φ computed by the algorithm.
A minimum hitting set δ∗ of a set of conflicts Φ is such that
for any (ϕ, φ) ∈ Φ, if ϕ ⊆ δ∗, then δ∗ ∩ φ ̸= ∅.

The presented idea leads to a general template of the algo-
rithm for solving the domain repair problem, which is shown
by Alg. 1. The algorithm maintains a set Φ of computed con-
flicts, which is empty at the beginning. On each iteration, the
algorithm computes a minimum hitting set δ of Φ. If δ turns
out to be a solution to the domain repair problem, the proce-
dure terminates. Otherwise, it computes new conflicts (based
on the current δ) and adds them to Φ.

The set δ computed (line 3) is called a candidate. The pro-
cedure for computing new conflicts (line 7) takes as input the
current candidate δ. The reason for this is that we want to
exploit δ to let the procedure be more informed about which
repairs are required. We will elaborate on this when we dis-

cuss how to compute new conflicts.
We can use the same algorithm template (Alg. 1) to deal

with the domain repair problem with negative plans. The key
for this is the improved procedure for computing conflicts
wrt. not only positive plans but negative ones.

Computing Conflicts We first extend the notion of con-
flicts to adapt negative plans. Intuitively speaking, we want
an extended conflict (ϕ, φ) to be such that if all repairs in ϕ
are applied, then at least one in φ must also be applied in
order to turn all positive plans into solutions and all negative
ones into non-solutions.

Definition 6. Let R = (D,T) be a domain repair problem.
A conflict for R is a tuple (ϕ, φ) each of which is a repair
set such that for an arbitrary repair set δ, if ϕ ⊆ δ and
δ ∩ φ = ∅, then one of the following holds:
1) There is a π+ ∈ Pi for some (Ti,Pi,Ei) ∈ T such that

π+ is not a solution to the planning problem (D′, Ti)
where D ⇒∗

δ D′.
2) There exists a negative plan π− with (π−, j) ∈ Ei for

some (Ti,Pi,Ei) ∈ T such that the jth action in π− is
not the first inapplicable action with respect to the plan-
ning problem (D′, Ti) where D ⇒∗

δ D′.

Bearing this extended definition, the next result follows.

Corollary 4. Let R be a domain repair problem, Θ an arbi-
trary set of conflicts for R, and δ = {r1, · · · , rn} an optimal
solution to R. It holds that δ is a minimum hitting set of Θ.

This result thus ensures the soundness of Alg. 1 when it is
used to solve the domain repair problem with both positive
and negative plans. Since Alg. 1 is not a decision procedure,
it will not terminate if the problem is not solvable.

For the purpose of computing conflicts, one crucial obser-
vation is that a conflict for a subproblem (D, (Ti, {π+}, ∅))
with π+ ∈ Pi or (D, (Ti, ∅, {(π−, j)})) with (π−, j) ∈ Ei,
is also a conflict for the original problem. As a consequence,
we could compute conflicts for a domain repair problem by
computing a conflict for each of its subproblems, or in other
words, computing a conflict for each of the given plans.

Conflicts for Positive Plans The procedure for comput-
ing a conflict for a positive plan has been presented by Lin,
Grastien, and Bercher (2023) (i.e., computing a conflict for
a sub-problem Rs = (D, (Ti, {π+}, ∅))). Thus, we omit the
details and use it as a black-box procedure here (i.e., the
procedure CONFPOS in line. 13 of Alg. 1). The procedure
takes as input a candidate repair set δ and a sub-problem Rs

containing a positive plan and outputs a conflict.

Conflicts for Negative Plans We focus on how to com-
pute a conflict with respect to a negative plan, i.e., dealing
with a sub-problem (D, (Ti, ∅, {(π−, i)})), provided a can-
didate repair set δ. For convenience, we let π− = ⟨a1 · · · an⟩
for some n ≥ i. The basic idea for this is as follows: We first
compute the domain D′ with D ⇒∗

δ D′. After that, we com-
pute a repair set φ for the updated domain D′ from which
at least one must be applied to make the ith action in π−

be the first inapplicable action. Lastly, we compute a set of
repairs ϕ which cause the application of a repair in φ. The



intuition for this procedure is that we could view the candi-
date set δ as an attempt to fixing some errors in the original
domain D. Thus, a repair set (i.e., φ) to the updated domain
D′ which contributes to making the ith action in π− be the
first one that is inapplicable strongly indicates which repairs
are further required.

More concretely, one could observe that applying the can-
didate δ to the domain D could result in one of the follow-
ing two consequences: 1) There exists another action before
the ith one in π− that is inapplicable, or 2) the entire pre-
fix ⟨a1 · · · ai⟩ of π− is executable. For the former, we could
simply view the subsequence ⟨a1 · · · ai−1⟩ as a positive plan
and then exploit the approach by Lin, Grastien, and Bercher
(2023) to compute a conflict. We focus on how to compute
a conflict (ϕ, φ) for the latter case.

The core of the procedure is to compute the set φ. To this
end, we observe that in order to turn ai into an inapplicable
action (where ai is the ith action in π−), we need to find
repairs which can make the following condition hold: There
exists a proposition in the precondition of ai which is not
satisfied in the state where ai is executed. In order to achieve
this, we could consider a set of repairs φp which can make a
specific proposition p become unsatisfied. The set φ is thus
the union of the sets φp for all possible propositions p. This
idea is implemented in Alg. 2 in which the function ENUM-
REPAIRS serves the purpose of enumerating all repairs that
can make p unsatisfied. In particular, p could be unsatisfied
in either the positive preconditions or the negative precon-
ditions. In Alg. 2, we differentiate these two cases by hav-
ing an additional parameter in the function ENUMREPAIRS,
controlling the repair set computed which can make p unsat-
isfied in the respective component. However, the treatments
for the two cases are totally symmetric. Therefore, in the rest
part of this section, we only focus on discussing the imple-
mentation of ENUMREPAIRS for positive preconditions.

Let p be an arbitrary proposition and si the state with re-
spect to the updated domain D′ where ai is executed. De-
pending on whether p is in si and whether p is in the (pos-
itive) precondition of ai, the treatment for the computation
for φp is different. We elaborate on these cases as follows.

Case 1: When p ∈ prec+(ai) and p ∈ si, φp is the set of
repairs each of which can remove p from si. One can observe
that φp is the union of two sets, φ+

p and φ−
p . The repairs in

φ+
p prevent p from being added to some state before si while

those in φ−
p delete p from a previous state of si. Concretely,

let aj be the action with the largest index j such that j < i,
p ∈ eff+(aj), and for every k satisfying j < k < i, p /∈
eff−(ak). φ+

p is the set of repairs rJa,p, eff+,−K where
ϱJaK = aj and ϱJpK = p for some ϱ. To compute the set
φ−
p , for each ak, j < k < i, we compute the set of repairs

rJa,p, eff−,+K with ϱJaK = ak and ϱJpK = p for some ϱ.
φ−
p is thus the union of all these sets.

Case 2: The second case is that p /∈ prec+(ai) while p /∈
si. The repair set that addresses this case is the set of repairs
rJa,p, prec+,+K with ϱJaK = ai and ϱJpK = p for some
ϱ. That is, the consequence of applying any of those repairs
is having p in ai’s preconditions.

Algorithm 2: Computing a conflict for a negative plan.
1: procedure CONFNEG(δ, Rs)
2: ▷ Rs = (D, (T , ∅, {(π−, i)}))
3: D′ ← D′ with D ⇒∗

δ
D′

4: if ai is not the first inapplicable action then
5: π′ ← ⟨a1, · · · , ai−1⟩
6: return CONFPOS(δ, (D, (T , {π′} , ∅)))
7: φ← ∅
8: for all propositions p do
9: ▷ repairs for making p unsatisfied in prec+

10: φ+← ENUMREPAIRS(p, prec+)
11: ▷ repairs for making p unsatisfied in prec−

12: φ−← ENUMREPAIRS(p, prec−)
13: φ← φ ∪ (φ+ ∪ φ−)
14: ϕ← ∅
15: for all r ∈ φ do
16: if r undoes some r′ ∈ δ then
17: ϕ, φ← ϕ ∪ {r′} , φ \ {r}
18: return (ϕ, φ)

Case 3: The last case, which is the most complicated one,
is when p /∈ prec+(ai) but p ∈ si. The complexity of com-
puting the repair set φp addressing this case stems from the
constraint that we need to insert p to prec+(ai) and remove
p from si simultaneously. The former can be achieved by a
repair from the set computed for the second case while the
latter one can be done by a repair from the set computed for
the first case. It thus implies that we need to apply those two
types of repairs simultaneously. Formally, we have that

φp = {r ◦ r′ | r ∈ φ1, r
′ ∈ φ2}

where φ1, φ2 refer to the sets computed for the first and sec-
ond cases, respectively, and ◦ indicates that r and r′ are ap-
plied simultaneously. It however does not align with the no-
tion of conflicts because by definition, a conflict should be
a set of repairs at least one of which must be applied. Here,
φp is a set of conjunctions of two repairs. Fortunately, we
could simply let φp = φ2 (in other words, the set computed
for this third case is identical to the one computed for the
second case). The reason for this is that the fact that at least
one pair of r and r′ must be executed implies that at least
one r′ must be applied.

Note that we also have the last case where p ∈ prec+(ai)
and p /∈ si. This is the case where ai is already not applica-
ble, meaning that we do not need to do any computation.

The implementation of the procedure is shown in Alg. 3.
Note that lines 3 to 4 illustrate how finding repairs for posi-
tive preconditions and for negative ones are symmetric.

The set φ is the union of all the sets φp The computation
for the set ϕ (the conditional part of the conflict) is done in
the same way as that for dealing with a positive plan. That
is, we iterate through every r ∈ δ. If there exists a r′ ∈ φ
that undoes r, we remove r′ from φ and add r to ϕ.

Finally, we prove that Alg. 2 indeed computes a conflict.
For this, we first observe the following lemma, which holds
because ENUMREPAIRS is an exhaustive search procedure.
Lemma 5. If the prefix ⟨a1 · · · ai⟩ of π− is executable, then



Algorithm 3: Computing the set φp for a proposition p.
1: procedure ENUMREPAIRS(p, prec)
2: if prec = prec+ then
3: c, c′, c′′ ← prec+, eff+, eff−

4: else c, c′, c′′ ← prec−, eff−, eff+

5: if p ∈ c(ai) and p ∈ si then
6: φ−

p ← ∅
7: for k = i− 1, · · · , 1 do
8: a, ϱ← a, ϱ with ϱJaK = ak
9: if p ∈ c′(ak) then

10: φ+
p ← {rJa,p, c′,−K | ϱJpK = p}

11: break
12: φ−

p ← {rJa,p, c′′,+K | ϱJpK = p} ∪ φ−
p

13: φp ← φ+
p ∪ φ−

p

14: else if p /∈ c(ai) then
15: a, ϱ← a, ϱ with ϱJaK = ai
16: φp ← {rJa,p, c,+K | ϱJpK = p}
17: return φp

line 8 to 13 in Alg. 2 compute a set of repairs from which
at least one must be applied in order to turn ai into the first
inapplicable action.

Based on this result, we could show that Alg. 2 computes
a conflict, which thus entails the correctness of our approach.

Theorem 6. Given a candidate set of repairs δ, Alg. 2 com-
putes a conflict (ϕ, φ).

Proof. We only need to consider the case where after apply-
ing δ, the prefix ⟨a1 · · · ai⟩ is executable. Suppose δ ⊆ ϕ and
δ∩φ = ∅. Then δ∩(φ∪ϕ−1) = ∅where ϕ−1 is the set of re-
pairs which undo the consequence of those repairs in ϕ. This
holds because δ∩ϕ−1 = ∅, which follows from the fact that
δ ⊆ ϕ. Furthermore, φ∪ϕ−1 is the set computed by line 8 to
13 in Alg. 2. Now we consider a repair r ∈ δ which makes
a proposition in ai’s precondition become unsatisfied. The
consequence of r must not happen in D′ because otherwise
φ ∪ ϕ−1 will not be computed. It however leads to a contra-
diction that r ∈ φ ∪ ϕ−1 because of Lem. 5. This concludes
our proof.

Example We use an example to illustrate how conflicts are
computed for negative plans where all action schemas and
predicates have 0 arity (i.e., the domain is propositional).
We consider two negative plans shown in Fig. 1. For the first
plan, a3 is supposed to be the first inapplicable action while
for the second plan, a4 should be inapplicable. The initial

a1
p

z
a2

z
q

¬z
a3

q · · ·

a1
p

z
a4

p

z
· · ·

Figure 1: An example containing two negative plans.

state for both these two plans is empty. The computation for
conflicts on the first iteration is as follows: For the first plan,
the proposition q falls into Case 1. Hence, the repair set φq

associated with it is {rJa2, q, eff+,−K}. z falls into Case 2,
which means that the repair set φz is {rJa3, z, prec+,+}. p
falls into Case 3, and hence, it corresponds to the repair set
{rJa3, p, prec+,+}. Taken together, the conflict on the first
iteration for the first plan is the union of all these three sets.
For the second plan, both p and z correspond to Case 1, and
q corresponds to Case 2. Hence, the conflict for this second
plan consists of rJa4, q, prec+,+K, rJa1, p, eff+,−K, and
rJa1, z, eff+,−K. After the first iteration, the collection of
conflicts will contain those two conflicts.

On the start of the second iteration, a minimal hitting set
δ is computed. To make the example more illustrative, let
δ consists of rJa3, p, prec+,+K and rJa1, z, eff+,−K. The
consequence of applying δ to the domain is that the second
plan now becomes a non-solution as desired, whereas a2 be-
comes the first inapplicable action in the first plan. There-
fore, the approach by Lin, Grastien, and Bercher (2023) is
used to compute a complex conflict (ϕ, φ) for the first plan
where ϕ consists of rJa1, z, eff+,−K, and φ consists of the
repair rJa2, z, prec+,−K.

Lastly, on the third iteration, any minimal hitting set could
make both input plans become non-solutions. For instance,
{rJa3, p, prec+,+K, rJa1, p, eff+,−K} is one such set.

Evaluation
Lastly, we would like to present the performance of our ex-
tended domain repair approach in practice. In particular, we
compared our approach with the one by Lin, Grastien, and
Bercher (2023), which solves the same domain repair prob-
lem as our approach but can only deal with positive plans.
The purpose of the comparison is to demonstrate the im-
pact of having this additional feature of dealing with nega-
tive plans. We evaluated our approach in two aspects: 1) the
quality of the repairs found by our approach (to evaluate the
usefulness of our repairs and hence approach), and 2) the
runtime of our approach for repairing a domain (to evaluate
the feasibility of our approach). The quality of a set of re-
pairs (to a domain) is evaluated in terms of precision, which
is the percentage of the repairs which successfully fix some
errors in the domain, and recall, which is the percentage of
the errors that are fixed.

There are two approaches which, at first glance, are solv-
ing a similar problem as our approach but are in fact differ-
ent from ours. The first one is developed by Gragera et al.
(2023), which fixes a flawed domain with missing positive
effects. Their approach relies on the assumption that the er-
rors in the domain cause a solvable planning problem be-
comes unsolvable. Hence, the approach takes as input an un-
solvable planning problem and fixes the domain by adding
missing positive effects to turn the problem into a solvable
one. The other work is by Aineto, Celorrio, and Onaindia
(2019), which learns a domain from an input plan. How-
ever, they assume that the state trace induced by the input
plan, which is partially observed, is flawless. The problems
solved by these two approaches align more with the sce-
nario of having only positive plans and contradict to the



Precision Recall Number of plans Average Length
Both No negative Both No negative Positive plans Negative plans Positive plans Negative plans

TETRIS 0.80 0.40 0.40 0.10 5 10 24.60 20.80
FREECELL 0.73 0.70 0.55 0.35 62 120 43.15 38.00
TIDYBOT 1.00 1.00 0.17 0.08 4 10 29.25 19.20
WOODWORKING11 0.53 0.30 0.27 0.10 7 2 62.29 9.00
WOODWORKING08 0.17 0.07 0.20 0.07 30 10 20.77 6.00
LOGISTICS00 0.50 0.80 0.25 0.20 28 2 47.54 1.00
LOGISTICS98 0.60 0.70 0.45 0.35 27 12 67.96 1.33
GED 0.90 0.40 0.36 0.12 20 18 14.30 8.67
SCANALYZER 0.70 1.00 0.70 0.50 14 2 42.57 4.00
SOKOBAN 1.00 1.00 1.00 0.50 2 6 40.57 17.67
SLITHERLINK 0.50 1.00 0.50 0.50 1 4 19.00 14.00
HIKING 0.40 0.60 0.20 0.15 7 4 20.43 13.50
FLOORTILE 0.70 0.80 0.35 0.20 1 10 27.00 1.00
THOUGHTFUL 0.53 0.70 0.16 0.14 15 2 135.27 2.00
MPRIME 1.00 1.00 1.00 0.50 30 58 11.10 4.66

Table 1: The precision and recall of returned repairs for each domain with randomized errors.

scenario of having negative plans, which is our main con-
tribution. More concretely, the scenario of a planning prob-
lem being unsolvable (due to errors in the domain) coincides
with the scenario of some positive plans not being solutions.
A correct, partially observed state trace required by the ap-
proach by Aineto, Celorrio, and Onaindia (2019) can only
come from an executable plan under the correct domain and
henceforth is only related to a positive plan. For this reason,
we did not compare our approach against them.

Experiment Configuration We have published our code1,
all benchmarks2, and all experimental results (Lin et al.
2025). We ran the experiments on an Intel Xeon processor
with 8GB memory. Our experiments consist of two parts. In
the first part, we generated flawed domains by randomly in-
troducing errors to domains from the Fast Downward (FD)
benchmark suite3. More specifically, for each domain D in
the suite, we first uniformly selected 20% of action schemas
and randomly introduced one of the following three errors
to each selected action schema: 1) deleting a precondition,
2) deleting a negative effect, and 3) adding a positive effect.
Intuitively speaking, these errors overly relax the ground
truth domain. After that, we again randomly selected 20% of
action schemas and introduced one of the following errros to
each of them which overly restricts the domain: 1) adding a
precondition, 2) adding a negative effect, and 3) deleting a
positive effect. Note that some action schemas might be se-
lected twice and hence have more than one error. We denote
the flawed domain obtained from D as D′. For each plan-
ning task T with respect to D in the FD problem suite, we
computed a set of positive plans and of negative plans for
(D′, T ) by invoking the FD planner (Helmert 2006) with a
15 minute timeout. More concretely, we compiled the task of
computing positive plans and negative plans as another plan-
ning problem whose solutions represent plans that are solu-

1https://github.com/Songtuan-Lin/classical-domain-repairer
2https://github.com/Songtuan-Lin/repairer-benchmarks
3https://github.com/aibasel/downward-benchmarks

tions in one domain but not the other (recall that a positive
plan is a solution in the ground truth but not in the flawed do-
main while a negative plan is the other way round). We cre-
ated a benchmark set containing 15 flawed domains in total.
We excluded domains which do not have both positive and
negative plans and which have features that are unsupported
by our approach. The number of positive plans and of nega-
tive plans for each domain is shown in Tab. 1. It also shows
the average length of positive plans and of negative ones for
each domain. In particular, since the suffix of a negative plan
after its first inapplicable action does not matter, the length
of a negative plan in the table actually refers to the length of
the prefix before the inapplicable action.

In the second part of the evaluation, we handcrafted three
flawed domains. Two out of three were from BlocksWorld,
each with different errors. The last one is generated from
Gripper. For the first BlocksWorld domain, we removed
the predicate clear from the preconditions of stack,
unstack, and pickup. For the second BlocksWorld do-
main, the predicate handemptywas removed from the pre-
conditions of unstack and the positive effects of stack.
For the last benchmark, we modified the Gripper domain by
deleting the predicate free from the preconditions of pick
and the positive effects of drop.

The bespoke benchmarks are inspired by the specific chal-
lenges in robotics. Planning domains can be used for mod-
eling problems in 3D environments (Roberts et al. 2021).
Geometric robot motion infeasibility (Kavraki and LaValle
2008) needs to be considered within domain models in a cat-
egory task and motion planning problems (Dantam et al.
2018; Garrett et al. 2021). Flawed planning domains like
BlocksWorld are used to model robotic arms manipulating
objects (Dantam et al. 2018; Pan et al. 2021), where nega-
tive plans in BlocksWorld can be robot motion infeasible.
In the first modified BlocksWorld benchmark, clear rep-
resents the geometric information about whether the robot
hand (end-effector) can approach the object unimpeded.
handempty (in BlocksWorld) and free (in Gripper) rep-



Figure 2: Runtime for solving each domain repair problem
instance with randomized errors.

resent whether there is some geometry (grasped) between
the robot end-effector that restricts its operation.

Results for Domains with Random Errors Since there
might be multiple cardinality-minimum repair sets which
can solve a domain repair problem (among which only one
can modify the flawed domain to the ground truth), both our
approach and the one by Lin, Grastien, and Bercher (2023)
might return any of them in a single run due to the random-
ness involved in the hitting set solver used. Thus, to better
estimate the quality of the repairs found, for each flawed
domain in the benchmark set, we ran the two approaches 5
times. After that, we computed the precision and recall of
the repairs found for each domain by taking the average of
the results for these 5 runs. The total precision and recall
are the average over all domains. We provided both positive
and negative plans to our approach and only positive ones to
the approach by Lin, Grastien, and Bercher (2023). The re-
sults for each benchmark domain are shown in Tab. 1 where
the columns labeled with “Both” show the result for our ap-
proach while those labeled with “No negative” are the re-
sults for the approach by Lin, Grastien, and Bercher (2023).
As we can see from the table, our approach achieved higher
precision in more than half benchmarks, and in almost ev-
ery domain, our approach had better recall. We believe that
the reason that our approach has lower precision in some do-
mains is due to randomness in the hitting set solver we used.

Fig. 2 depicts the runtime of our approach and of the one
by Lin, Grastien, and Bercher (2023) for solving each do-
main repair problem instance. Each box corresponds to one
benchmark, encapsulating the runtime for all 5 runs. The up-
per and lower edges of a box indicate the maximal and min-
imal runtime. As can be seen from the plot, our approach
requires more time than the other. This is not surprised be-
cause our approach is dealing with a more complicated rea-
soning task where the search space is much larger because

Precision Recall
Both No-neg Both No-neg

BLOCKS 1.00 0.00 1.00 0.00(clear)

BLOCKS 1.00 0.60 1.00 0.30(handempty)

GRIPPER 1.00 0.00 1.00 0.00(free)

Table 2: The precision and recall of the founded repairs for
each domain with bespoke errors.

of the possible preconditions that can be added. However, al-
most all domains were repaired within 100 seconds, among
which many need less than 10 seconds. The results thus
show that the approach can correct a domain in reasonable
time showing the feasibility of our approach. In particular
in the area of modeling support such very small runtimes
that we could achieve are important as – based on common
knowledge and personal experience by the authors – users
likely want to obtain feedback and support quickly and are
too impatient or busy to wait for several minutes until they
can continue with their domain modeling task.

Results for Domains with Bespoke Errors We again ran
our approach 5 times and compared it with the one by Lin,
Grastien, and Bercher (2023). Tab. 2 shows the results. Our
approach achieved 100% precision and 100% recall. In par-
ticular, the other approach failed to find any repair for two
benchmarks. This is because the errors introduced to those
two domains do not overly restrict the ground truth, meaning
that every solution in the ground truth is still a solution in the
flawed domain. Hence, the approach by Lin, Grastien, and
Bercher (2023) cannot find any repairs. This further empha-
sizes the importance of having negative plans, because these
benchmarks are closely related to practical applications.

Conclusion
In this paper, we proposed an approach for fixing a flawed
domain which takes as input a domain, a set of positive and
of negative plans, and outputs a cardinality-minimum set of
repairs to the domain so as to turn all positive plans into so-
lutions and all negative ones into non-solutions. Our experi-
mental results show strong empirical performance of our ap-
proach in fixing domains both drawn from the IPC with ran-
domized errors and from handcrafted (flawed) domains mo-
tivated by robotics applications. This thus demonstrates the
potential of deploying our approach in modeling assistance
as well as forging connections to applications like robotics.
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