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Abstract

This paper reveals the inherent limitations of A* in HTN
planning by identifying various cycle types induced by the
task hierarchy and analyzing their effects on the termination
of the algorithm. We prove that A* even with the perfect
heuristic, and for the special case of totally ordered prob-
lems, which are known to be decidable, is incomplete. An
especially interesting results is that having a visited list (i.e.,
graph search) with the null heuristic has better termination
guarantees than tree search with the perfect heuristic. We pro-
vide a polynomial-time test for detecting those cycles that
render A* incomplete, and analyzed all existing benchmark
domains from the most-recent international planning compe-
tition. Results show that in more than half of all domains, A*
tree search would be incomplete even with the perfect heuris-
tic, and in roughly 40% of cases A* graph search might also
be incomplete depending on the provided heuristic function.
We also point to a normal form that preserves semantics and
guarantees completeness of the resulting models, though im-
plementation and testing remains for future work.

Introduction
Hierarchical Task Network (HTN) planning is a framework
that allows decomposing abstract tasks into smaller sub-
tasks (Bercher, Alford, and Höller 2019; Ghallab, Nau, and
Traverso 2016). This mechanism results in interesting de-
viations from classical planning as HTN planning is do-
main configurable (Nau et al. 2003), undecidable (Geier and
Bercher 2011; Erol, Hendler, and Nau 1996) and more ex-
pressive (Lin and Bercher 2022; Höller et al. 2016;2014).
Decomposition is fundamentally a zero-cost operation since
it only changes the problem representation. This, by itself,
violates the assumptions of the A* search algorithm (Pearl
1984; Hart, Nilsson, and Raphael 1968), but it has been
shown that as long as zero-cost transitions cannot be re-
peated infinitely many times in a row, the algorithm is still
complete, albeit with a cost to performance (Aghighi and
Backstrom 2016; Benton et al. 2010).

In this paper, we show that in hierarchical planning, due
to the recursive nature of decompositions, infinite zero-cost
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paths are rampant even in severely restricted subclasses.
Furthermore, unlike classical planning where almost per-
fect heuristics cause performance issues (Helmert and Röger
2008), we prove that A* in totally-ordered HTN planning
problems (which is known to be decidable (Erol, Hendler,
and Nau 1996)) is incomplete for all almost perfect heuris-
tics. Even with the perfect heuristic, the completeness is con-
ditioned on the tie-breaking strategy. This theoretical result
is particularly significant given A*’s central role in recent
HTN planning systems. Notably, the winner of all three (ag-
ile, satisficing, and optimal) Totally Ordered HTN (TOHTN)
planning tracks of the IPC 2023 utilized A* search (Olz,
Höller, and Bercher 2023) with additional pruning tech-
niques (Olz and Bercher 2023). Even more, the winner of the
optimal partial order track also utilized A* (Höller 2023).

Since our analysis focuses on a subclass of HTN planning
(i.e., TOHTN planning), the findings also extend to the gen-
eral case of partially ordered problems. By examining A*’s
limitations in this important decidable fragment, we illus-
trate fundamental challenges in deploying heuristic search
for HTN planning. Our contributions are as follows:

• We prove that, even with the perfect heuristic, A* is in-
complete for HTN planning,

• characterize the conditions under which the search pro-
cess may not terminate, and provide a poly-time algo-
rithm to detect them prior to search,

• provide a solution-preserving transformation of TOHTN
domains that guarantees the completeness of A* in the
transformed domain, and

• conduct an evaluation of totally-ordered hierarchical do-
mains in the International Planning Competition (IPC)
2023 to see how frequently such conditions happen in
practical scenarios.

Formalization
HTN Planning
HTN planning is concerned with performing tasks, as op-
posed to achieving a particular goal. As such, there is no ex-
plicit goal description. However, if necessary, one can com-
pile a goal description to the precondition of a new primitive
task that must be executed as the last step (Geier and Bercher
2011). A TOHTN planning problem is a special case of HTN



planning where all task networks are restricted to be sequen-
tial. Our definitions are based on the formalization provided
by Behnke, Höller, and Biundo (2018). We use X∗ to de-
note the Kleene closure of the set X (Hopcroft, Motwani,
and Ullman 2006).

Definition 1 (TOHTN Planning Problem). A TOHTN plan-
ning problem is a tuple P = ⟨F,C,A,M, cI , sI⟩ where:

• F is a finite set of facts,
• C, A are disjoint finite sets of compound and primitive

task names (T = C ∪A), respectively,
• M ⊆ C × T ∗ is a finite set of totally ordered decompo-

sition methods,
• cI ∈ C is the initial compound task name,
• s ∈ 2F is the initial state.

A task network is a finite string of compound and primi-
tive task names. For this reason, we use the notation t1 . . . tk
to denote a string (task network) of symbols (tasks). Further-
more, by abuse of notation, tj ∈ t1 . . . tk is used to denote
that a task tj appears in task network t1 . . . tk.

Definition 2 (Task Network). A (totally ordered) task net-
work is defined as tn = t1 . . . tk where tn ∈ T ∗.

For each primitive task name, a ∈ A, its action is a tuple
⟨pre(a), add(a), del(a)⟩1 where pre(a) ⊆ F denotes the
preconditions that must hold in order to execute the action,
and add(a), del(a) ⊆ F denote the add and delete effects
of a, respectively. An action a ∈ A is executable in state
s ∈ 2F iff pre(a) ⊆ s. The state transition function γ : A×
2F → 2F is defined as:

γ(a, s) =

{
(s \ del(a)) ∪ add(a) if a is executable in s

undefined otherwise
In contrast, compound tasks are decomposed to smaller sub-
tasks. As mentioned, the cost of decomposing a compound
task is always zero.

Definition 3 (Decomposition). Given a task network tn1 =
t1ct2 ∈ T ∗ where c ∈ C, a method m = ⟨c, ω⟩ ∈ M
substitutes c with ω, denoted as tn1 →c

m tn2, resulting in a
new task network tn2 = t1ωt2.

Given the definitions of action execution and decomposi-
tion, we can now define the progressions of a task network
(Höller et al. 2020). Similar to decomposition, we denote the
progression of a task network tn to one of its successors, tn′,
by tn

p
⇝ tn′ where p is the name of the progressed task.

Definition 4 (Progression). Let s ∈ 2F be a state, and tn =
t1 · · · tk be a task network (k ≥ 1). The set of successors of
tn under progression, denoted as Prog(tn), is defined as:

• if t1 ∈ A:
– if t1 is executable in s, then Prog(tn) = {t2 . . . tk},
– otherwise, Prog(tn) = ∅.

• if t1 ∈ C:
– Prog(tn) = {αt2 . . . tk | ⟨t1, α⟩ ∈M}
1For brevity’s sake we have omitted the explicit mapping func-

tion δ : A → 2F × 2F × 2F known from other formalizations
(Bercher, Alford, and Höller 2019).

The goal of HTN planning is to refine the initial com-
pound task to the empty task network (i.e., perform all the
tasks), which we denote as ϵ.
Definition 5 (Solution). Let P = ⟨F,C,A,M, cI , sI⟩ be a
TOHTN planning problem. A (possibly empty) sequence of
progression π = cI

p1⇝ tn2
p2⇝ · · · pm⇝ ϵ is a solution to

P iff there exists a sequence of states s1, s2, . . . , sm+1 with
s1 = sI such that for all i ∈ {1, . . .m}, we have:
• if progression pi is an action execution, then pi is exe-

cutable in si and si+1 = γ(pi, si),
• if progression pi is a decomposition, then si+1 = si.
π is an optimal solution iff it is minimal with respect to num-
ber of primitive action progressions.

We use context-free grammar notation E →
t1 . . . tk | . . . | t′1 . . . t

′
j to represent that a compound

task, E, can be decomposed into different task networks,
separated by “|”, without mentioning the methods. We use
upper cases letters (e.g. E), lower case letters (e.g., x), and
ϵ to denote compound tasks, primitive tasks, and empty
methods (i.e., a method with zero subtasks), respectively.
For example, E → TT | x | ϵ denotes a compound task
E which can be decomposed either into two instances of
compound task T , a primitive action x, or the empty task
network (i.e., removed).

A* Search
A* is a best-first search algorithm that, usually, operates on
an implicit graph to find the minimum cost path from an ini-
tial node to a goal one by iteratively expanding nodes based
on the sum of accumulated cost and the estimated remain-
ing effort (Nilsson 1982). Our implementation of A* (Alg.
1) adheres to the textbook definition (Edelkamp, Schroedl,
and Koenig 2010). However, since all presented heuristics
are consistent, we have intentionally omitted fringe reopen-
ing. Furthermore, we consider the tree search version as
well (i.e., A* without a CLOSED list) because establish-
ing whether two task networks are isomorphic or not is GI-
Complete in the general case of partially-ordered problems
(Behnke, Höller, and Biundo 2015). To define the search
formally, we adopt the search node definition in HTN pro-
gression space (Höller et al. 2020), and denote the set of all
search nodes as SN.
Definition 6 (Search Node). A search node is a tuple SN =
⟨Γ, tn, s⟩ where:
• Γ = a1, a2, . . . , an is a, possibly empty, sequence (with

possible repetition) of actions that have been executed so
far to reach this search node,

• tn is the remaining task network,
• s is the current state,

Two search nodes SN 1 = ⟨Γ1, tn1, s1⟩ and SN2 =
⟨Γ2, tn2, s2⟩ are isomorphic iff we have tn1 = tn2 and
s1 = s2.

For all search nodes, we define the f-value to be the sum of
the accumulated cost (also referred to as the g-value) and an
estimation of the remaining cost (h-value). Note that since
decompositions are zero-cost transitions, they do not alter



Algorithm 1: A* Search
Input: cost function w, heuristic h, successor

generation function Expand, implicit problem
graph start node s, and goal test Goal.

Output: Cost-optimal path from s to a goal node, or
∅ if no such path exists

1 CLOSED← ∅;
2 OPEN← {s};
3 f(s)← h(s);
4 while OPEN ̸= ∅ do
5 Remove u from OPEN with minimum f(u);
6 Insert u into CLOSED;
7 if Goal(u) then return Path(u);
8 else
9 Succ(u)← Expand(u);

10 foreach v ∈ Succ(u) do
11 if v ∈ OPEN then
12 if g(u) + w(u, v) < g(v) then
13 parent(v)← u;
14 f(v)← g(u) + w(u, v) + h(v);

15 else if v ∈ CLOSED then
16 if g(u) + w(u, v) < g(v) then
17 parent(v)← u;
18 f(v)← g(u) + w(u, v) + h(v);

19 else
20 parent(v)← u;
21 f(v)← g(u) + w(u, v) + h(v);
22 Insert v into OPEN with f(v);

23 return ∅

the g-value. Formally, for a search node SN = ⟨Γ, tn, s⟩,
we have f(SN ) = g(SN )+h(SN ) where g(SN ) = |Γ| and
h(SN ) is obtained from a heuristic function h : T ∗×2F →
N≥0 ∪ {∞}. The perfect heuristic function returns the exact
remaining cost for all search nodes.
Definition 7 (Perfect Heuristic). Let g∗(tn, s) be the mini-
mum cost to refine tn into a solution from state s. The perfect
heuristic function, h∗, is defined as follows:

h∗(tn, s) =

{
g∗(tn, s) if solution exists
∞ otherwise

The almost perfect heuristic is always, by a constant
amount, less than the optimal solution cost (Helmert and
Röger 2008).
Definition 8 (Almost Perfect Heuristic). Let ∆ ∈ N>0 be
a small positive constant. The almost perfect heuristic func-
tion, h∆, is defined as follows:

h∆(tn, s) =

{
max(h∗(tn, s)−∆, 0) if solution exists
∞ otherwise

On the other end of the spectrum is the null heuristic
which adds no information.
Definition 9 (Null Heuristic). For all task networks tn and
states s, the null heuristic is defined as h0(tn, s) = 0.

Incompleteness
In this section, we show that the search space of many TO-
HTN planning problems contain an infinite zero-cost path,
a sufficient condition for the incompleteness of A* (Ben-
ton et al. 2010). Importantly, our result remains valid even
in the absence of zero-cost actions, as our construction de-
pends solely on decomposition transitions and is unaffected
by action costs. We start by introducing the notion of a cycle
in the context of TOHTN planning. Existence of a cycle is a
necessary condition to have an infinite search space (Alford
et al. 2012).

Definition 10 (Cycle). Let σ = c1 →c1
m1
· · · →ck

mk
tnk+1 be

a sequence of decompositions (k ≥ 1). σ is an (unrestricted)
cycle iff tnk+1 = αc1β where α, β ∈ T ∗. We refer to c1 as
the initiator of the cycle.

As a simple example, consider C → xC which forms
a cycle with a single decomposition. Next, we restrict this
definition to be zero-cost i.e., no primitive action is executed
in this cycle to change the g-value. This cycle is akin to left-
recursion in formal grammars.

Definition 11 (ϵ-prefix Cycle). Let σ = tn1 →c1
m1
· · · →ck

mk

tnk+1 be a cycle. σ is an ϵ-prefix cycle iff tnk+1 = c1β
where β ∈ T ∗.

The existence of an ϵ-prefix cycle in a problem is the
sufficient condition to construct a finite zero-cost path in
the search space. The reason for finiteness is that the suf-
fix, β, may be empty. In that case, the cycle leads to what
is known as an empty cycle (Behnke, Höller, and Biundo-
Stephan 2019) where the starting task network is identical
to the resulting task network.

Definition 12 (Empty Cycle). Let σ = tn1 →c1
m1
· · · →ck

mk

tnk+1 be an ϵ-prefix cycle. σ is an empty cycle iff we have
tnk+1 = tn1.

We now prove that the perfect heuristic cannot differenti-
ate between the task networks that are on an empty cycle.

Theorem 1. Let σ = tn1 →c1
m1

tn2 →c2
m2
· · · →ck

mk
tnk+1

be an empty cycle, and s be an arbitrary state. It holds that
h∗(tn1, s) = h∗(tn2, s) = · · · = h∗(tnk+1, s).

Proof. Let g∗(tn1, s) be the optimal cost of refining tn1

into a solution from s. From the empty cycle assumption, it
follows that h∗(tn1, s) = g∗(tn1, s) = g∗(tnk+1, s). Ad-
ditionally, the optimal cost of task networks tn2, . . . , tnk

cannot be greater than g∗(tn1, s) because there exists a se-
quence of zero-cost operations to make each of them iden-
tical to tn1 (i.e., decomposition to tnk+1). Furthermore, the
optimal cost of task networks tn2, . . . , tnk cannot be less
than g∗(tn1, s). Suppose that there exists a tni in the cycle
(2 ≤ i ≤ k) such that g∗(tni, s) < g∗(tn1, s). Then, there
exists a sequence of zero-cost operations to turn tn1 into tni

which has a lower value than g∗(tn1, s). This implies that
g∗(tn1, s) is not the optimal solution cost, which is a contra-
diction. Thus, the optimal cost of refining each task network
in an empty cycle to a solution is equal. Hence, the perfect
heuristic, given the same state, returns the same value for all
of them.



The CLOSED list detects an empty cycle and prevents
its repetition. However, variants of A* that do not utilise a
CLOSED list, such as tree search A* and Iterative Deepen-
ing A* (IDA*) (Korf 1985), are incomplete when this con-
dition is present. In order to prove this, we need to introduce
the concept of f-Reachability. This is crucial because such a
cycle might exist, but may be pruned by an informed heuris-
tic long before initiation.
Definition 13 (f-Reachable). Let P = ⟨F,C,A,M, cI , sI⟩
be a TOHTN planning problem with an optimal solution cost
of g∗. Let c ∈ C be a compound task, and h be a heuristic
function. We define c as f-Reachable under h iff there exists
a sequence of progressions cI

p1⇝ tn2
p2⇝ · · · pm⇝ tnm+1 and

a sequence of states sI , s2, . . . , sm+1 such that:

1. tnm+1 is of the form cβ with β ∈ T ∗,
2. for all i ∈ {1, . . .m}, we have: if progression pi is an

action execution, then pi is executable in si and si+1 =
γ(pi, si); otherwise si+1 = si,

3. the following equation holds:
m∑
i=1

cost(pi)︸ ︷︷ ︸
cost to reach tnm+1

+ h(tnm+1, sm+1)︸ ︷︷ ︸
estimated cost from tnm+1

≤ g∗

Our first incompleteness result is established by showing
that in the presence of an f-Reachable task that can initiate an
empty cycle, A* without a CLOSED list may not terminate.
Theorem 2. Let P = ⟨F,C,A,M, cI , sI⟩ be a TOHTN
problem such that there exists a c ∈ C where c is the ini-
tiator of an empty cycle and c is f-Reachable under h∗. Tree
search A* with h∗ is incomplete.

Proof. Let g∗ be the optimal solution cost to P . Since c is
the initiator of an empty cycle, we know that there exists a
sequence of search nodes SN 1, . . . ,SN k+1 corresponding
to the decompositions tn1 →c1

m1
· · · →ck

mk
tnk+1 where

tn1 = tnk+1. By Thm. 1 and the fact that decomposi-
tion neither changes the state nor the cost, it follows that
f(SN 1) = f(SN 2) = · · · = f(SN k+1). Next, by the as-
sumption that c is f-Reachable, we know that f(SN 1) ≤ g∗.
Thus, A* may eventually expand SN 1, and its successor
SN 2 will be inserted to OPEN. The same conditions hold for
SN 2, and this process can continue until the cycle is com-
plete; i.e., SN k is in the OPEN list. Since, there is no dupli-
cate detection, the cycle can be repeated. Hence, the algo-
rithm may not terminate with certain tie-breaking strategies.
To see this, consider a tie-breaking strategy that favors de-
composition over action execution. In this case, A* contin-
uously seeks further decompositions which is always avail-
able from the initiated cycle.

Next, we introduce the concept of a “growing” empty cy-
cle to create an infinite zero-cost path. This cannot be de-
tected with a CLOSED list because once it is completed, the
resulting task network is not identical to its starting form.
Definition 14 (Growing ϵ-prefix Cycle). Let σ = tn1 →c1

m1

tn2 →c2
m2
· · · →ck

mk
tnk+1 be an ϵ-prefix cycle. σ is a grow-

ing ϵ-prefix cycle iff tnk+1 = c1β where β ∈ T ∗ and β ̸= ϵ.

T
h=2
g=0

TT
h=2
g=0

x

TTT
h=2
g=0

xT

TTTT
h=2
g=0

xTT

...

Figure 1: An illustration of how graph search A* gets stuck
in a grow and shrink cycle for T → TT | x | ϵ. Nodes rep-
resent search nodes, and edges are possible transitions. For
clarity, not all transitions are included. The thick arrows rep-
resent the grow part of a cycle, and the dashed thick arrows
are the shrink part (empty methods). The heuristic value and
the accumulated cost of each search node are noted using h
and g, respectively.

Uniform cost search (i.e., A* search with the null heuris-
tic) is incomplete when such a cycle is present.

Theorem 3. Let P = ⟨F,C,A,M, cI , sI⟩ be a TOHTN
problem such that there exists a c ∈ C where c is the ini-
tiator of a growing ϵ-prefix cycle and c is f-Reachable under
h0 (i.e., uniform cost search). Graph search A* with h0 is
incomplete.

Proof. Let g∗ be the optimal solution cost to P . Since c is
the initiator of a growing ϵ-prefix cycle, we know that there
exists a sequence of search nodes SN 1, . . . ,SN k+1 corre-
sponding to the decompositions tn1 →c1

m1
· · · →ck

mk
tnk+1

such that tnk+1 = c1β where β ∈ T ∗ and β ̸= ϵ (Def. 14).
Because the cycle is formed purely from decompositions,
the g-values of all search nodes are equal. By the null heuris-
tic assumption, it follows that their f-values are also equal.
Since SN 1 is f-Reachable under the null heuristic, once it
is expanded, the entire cycle may be generated as they have
the same f-value. However, since tnk+1 ̸= tn1, tnk+1 will
be inserted into the OPEN list. Thus, another cycle may be
triggered again from tnk+1. It follows that, given P , the al-
gorithm may not terminate.

While we have created an infinite zero-cost path using the



growing ϵ-prefix cycle, a mildly informed heuristic can still
terminate the cycle as the estimated cost may increase. To
see this, consider T → x | TT . Even though there is a
growing ϵ-prefix cycle and the g-value of the resulting search
node does not differ from the starting one, the h-value may
increase. Thus, the overall f-value is not the same. This im-
plies that eventually this branch will lead to a search node
with cost greater than g∗ of the problem. As a last step, we
need to further restrict this cycle to disable heuristic infor-
mation. In order to do so, we need “shrinking”, which allows
the newly introduced tasks in a growing ϵ-prefix cycle to be
removed from the final task network.
Definition 15 (Grow and Shrink Cycle). Let σ = tn1 →c1

m1

tn2 →c2
m2
· · · →ck

mk
tnk+1 be a growing ϵ-prefix cycle. σ

is a grow and shrink cycle iff in tnk+1 = c1β, it holds that
β ̸= ϵ and ∀t ∈ β, we have:
1. t ∈ C, and
2. there exists a sequence of decompositions t →t

mj

· · · →cj+n
mj+n ϵ.

The following corollary shows that even the perfect
heuristic cannot see that the task networks on a grow and
shrink cycle are growing.
Corollary 1. Let tn1 →c1

m1
· · · →ck

mk
tnk+1 be a grow

and shrink cycle. There always exists a sequence of de-
compositions tnk+1 →

ck+1
mk+1 · · · →

ck+n
mk+n tnk′ such that

tn1 →c1
m1
· · · →ck+n

mk+n tnk′ forms an empty cycle.

Proof. From Def. 15, we know that every task introduced
in the grow cycle can be turned into ϵ. It follows that there
exists a sequence of decompositions for each introduced task
in tnk+1 that removes it, and these sequences can be chained
together to transform tnk to tnk′ = tn1 in which the cycle
from tn1 to tnk′ satisfies the definition of an empty cycle
(Def. 12).

The A* graph search in the presence of a grow and shrink
cycle is incomplete. To illustrate how this breaks the algo-
rithm, consider T → x | TT | ϵ which only differs from
the previous example in that T has an empty method. T
clearly has a grow cycle T → TT , and allows shrinking
with T → ϵ. We know that each run of the cycle increases
the network size (from the grow trait), and the OPEN list
keeps growing. However, at the same time, a perfect heuris-
tic cannot rule out that the algorithm is not on the correct
path because the resulting task networks can freely go back
to a prior form with the shrink trait. A few iterations of the
search are depicted in Fig. 1.
Theorem 4. Let P = ⟨F,C,A,M, cI , sI⟩ be a TOHTN
problem such that there exists a c ∈ C where c is the ini-
tiator of a grow and shrink cycle and c is f-Reachable under
h∗. Graph search A* with h∗ is incomplete.

Proof. Let SN 1, . . . ,SN k+1 be the sequence of search
nodes corresponding to the grow and shrink cycle initiated
from c. By the f-Reachability assumption, we know that
SN 1 may eventually be expanded by A*. From Corollary
1, we know that every grow and shrink cycle lies on an
empty cycle. From theorem 1, it follows that h∗(SN 1) =

h∗(SN 2) = · · · = h∗(SN k+1). Hence, SN k may be ex-
panded. Its successor SN k+1 is not isomorphic to SN 1 as
the task network has changed. Thus, it will not be in the
CLOSED list, and will be inserted to the OPEN list. The
same process may start again from SN k+1, and the algo-
rithm may or may not terminate based on the tie-breaking
strategy.

In the proof of Thm. 4, the termination is determined by
the tie-breaking strategy. However, if we relax the perfect
heuristic to almost perfect A* is bound to get stuck in an
inescapable cycle, regardless of the tie-breaking strategy.
Theorem 5. Let h∆ be any almost perfect heuristic. Let
P = ⟨F,C,A,M, cI , sI⟩ be a TOHTN problem such that
there exists a c ∈ C where c is the initiator of a grow and
shrink cycle and c is f-Reachable under h∆. Graph search
A* with h∆ does not terminate on P .

Proof. Let g∗ be the optimal cost for problem P . By the f-
Reachability assumption we know that there exists a search
node SN = ⟨Γ, cβ, s⟩ where

∑
a∈Γ cost(a) + h∆(cβ, s) ≤

g∗. Assuming g∗ ̸= ∞ (i.e., the problem has a solution),
we can substitute h∆(cβ, s) with max(h∗(cβ, s)−∆, 0) to
obtain max(g∗ −∆, 0) ≤ g∗ which is always true since g∗

is non-negative. We know that A* will terminate only af-
ter there is no search node SN ′ in the OPEN list such that
f(SN ′) < g∗ (Pearl 1984). Hence, the termination condi-
tion does not fire.

Our incompleteness results are summarized in table 1. A
counter-intuitive implication of Theorems 2 and 3 can be ob-
served in this table; having a CLOSED list has a stronger ef-
fect on completeness than having the perfect heuristic! Pre-
vious results attributed the increased coverage (i.e., number
of solved problems) of the PANDA planning system (Höller
et al. 2020) – the framework adopted by the winners of op-
timal HTN planning tracks of the IPC 2023 – after intro-
ducing duplicate detection mechanism (i.e., switching from
tree search to graph search) to reduced duplicate computa-
tional efforts (Höller and Behnke 2021). However, given the
new evidence, we hypothesize that this mechanism allowed
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Tree search A* with h∗ ✓ ✓
Graph search A* with h0 ✓ ✓ ✓
Graph search A* with h∆ ✓ ✓ ✓ ✓
Graph search A* with h∗ ✓ ✓ ✓ ✓

Table 1: The completeness of A* variants when faced with
different cycle types. A checkmark indicates that the algo-
rithm in the corresponding row terminates with an answer
even if the cycle in the corresponding column is initiated
during the search.



the algorithm to deal with empty cycles. The evaluation sec-
tion backs up our hypothesis by showing that such cycles are
present in many of the domains.

Cycle Existence Test
We know for a fact that empty cycles can only happen if
there is a method with zero or one subtask; otherwise, the
expansion results in a larger task network (Behnke, Höller,
and Biundo-Stephan 2019). Thus, if such a method does
not exist (i.e., the problem is in NF≥2 form (Höller et al.
2014)), the only cycle that can be present is the growing
ϵ-prefix one. The existence of any cycle introduced in this
paper can be checked using the Task Decomposition Graph
(TDG) (Bercher et al. 2017; Elkawkagy et al. 2012).

Definition 16 (Task Decomposition Graph). Let P =
⟨F,C,A,M, cI , sI⟩ be a TOHTN planning problem. The bi-
partite graph ϕ = ⟨VT , VM , ET→M , EM→T ⟩ is the Task
Decomposition Graph of P iff:

1. cI ∈ VT ,
2. if t ∈ VT and there exists a method m = ⟨t, tn⟩, then

m ∈ VM and ⟨t,m⟩ ∈ ET→M ,
3. if m = ⟨t, t1 . . . tk⟩ ∈ VM , then ∀ti ∈ t1 . . . tk : ti ∈ VT

and ⟨m, ti⟩ ∈ EM→T ,
4. ϕ is minimal w.r.t. conditions 1 to 3.

From definition, it follows that the search space of a prob-
lem has a cycle if and only if its TDG has a cycle.

Definition 17 (TDG Cycle). Let P = ⟨F,C,A,M, cI , sI⟩
be a TOHTN planning problem, and ϕ =
⟨VT , VM , ET→M , EM→T ⟩ be its TDG. P has a cycle
iff there exists a sequence of nodes t1,m1, t2,m2, . . .mk, tk
such that tk = t1 and for all ⟨ti,mi, ti+1⟩ where 1 ≤ i < k,
it holds that ⟨ti,mi⟩ ∈ ET→M , and ⟨mi, ti+1⟩ ∈ EM→T .

Given a cycle in the TDG, we can classify it by checking
the introduced prefix and suffix. For that, we need to com-
pute the set of all tasks that can be reduced to epsilon, Cϵ,
which is known to be polynomial (Behnke, Höller, and Bi-
undo 2015; Hopcroft, Motwani, and Ullman 2006).

Proposition 1. Let P = ⟨F,C,A,M, cI , sI⟩ be a TOHTN
planning problem, and ϕ = ⟨VT , VM , ET→M , EM→T ⟩ be
its TDG. Let σ be a cycle in ϕ where:

σ = t1, ⟨t1, α1t1β1⟩, t2, ⟨t2, α2t2β2⟩, . . . , ⟨tn, αntnβn⟩, t1

and αi, βi ∈ T ∗ for all 1 ≤ i ≤ n. Let Cϵ ⊆ C be the set
of compound tasks that can be reduced to ϵ. The following
statements are implied:

1. P has an ϵ-prefix cycle iff for all αi either we have αi =
ϵ, or ∀t ∈ α : t ∈ Cϵ.

2. P has an empty cycle iff for all αi and βi, either we have
αiβi = ϵ, or ∀t ∈ αiβi : t ∈ Cϵ.

3. P has a growing ϵ-prefix cycle iff in addition to the con-
ditions for an ϵ-prefix cycle, we have β1β2 · · ·βn ̸= ϵ.

4. P has a grow and shrink cycle iff in addition to the
conditions for a growing ϵ-prefix cycle, we have ∀t ∈
β1β2 · · ·βn : t ∈ Cϵ.

A topological sorting of the TDG establishes whether a
cycle exists or not in polynomial time (Russell and Norvig
2010). However, a naive approach to cycle characterization
requires enumeration of all cycles in the TDG, which is
exponential with respect to the number of nodes (Johnson
1975). Thus, it remains to be seen whether an efficient al-
gorithm for classification of the cycles exist or not. How-
ever, we provide an algorithm to check for ϵ-prefix cycles
in polynomial time. This algorithm cannot differentiate be-
tween the three possible ϵ-prefix cycles (empty, growing,
grow and shrink). The underlying idea is to compute the set
of symbols that can appear in the first position of a decom-
posed task network, and the implementation (Alg. 2) is a
slightly modified version of the “first” set in compiler de-
sign (Aho et al. 2006). If a compound task appears in its
first set, it follows that it can do recursion without introduc-
ing any other symbols (i.e., an ϵ-prefix cycle). In the worst
case, the algorithm needs to compute as many as |A ∪ C|
first sets. Since, each set can contain at most the entire set
of tasks, the fixed-point iteration terminates in a low-order
polynomial time with respect to the number of tasks.

Algorithm 2: ϵ-Prefix Cycle Existence Test
Input: TOHTN Planning Problem

P = ⟨F,C,A,M, cI , sI⟩, and a set of
nullable compound tasks Cϵ.

Output: True, or False
1 foreach a ∈ A do first(a) = {a} ;
2 foreach c ∈ C do first(c) = ∅ ;
3 changed ← True;
4 while changed = True do
5 changed ← False;
6 foreach ⟨c, t1t2 . . . tk⟩ ∈M do
7 before← first(c);
8 i← 1;
9 for i ≤ k do

10 first(c)← first(c) ∪ {ti} ∪ first(ti);
11 if ti ̸∈ Cϵ then break;
12 if before ̸= first(c) then changed← True;

13 foreach c ∈ C do
14 if c ∈ first(c) then return True;
15 return False

The question of whether a cycle is triggered during search
or not, relies on the f-Reachability of the initiator (Def. 13).
Thus, a tight decision procedure to check whether A* termi-
nates on a particular TOHTN problem is not practically fea-
sible. The following theorem establishes that f-Reachability
is as hard as plan existence.

Theorem 6. Let P = ⟨F,C,A,M, cI , sI⟩ be a TOHTN
problem, and c ∈ C be a compound task. Deciding whether
c is f-Reachable with h∗ is EXPTIME-hard.

Proof. We reduce from the TOHTN plan existence prob-
lem, which is known to be EXPTIME-hard (Alford, Bercher,
and Aha 2015). Given an arbitrary TOHTN problem P ,



we construct a problem P ′ = ⟨F,C ′, A,M ′, c′I , sI⟩ where
C ′ = C ∪ {cf , c′I} such that C ∩ {cf , c′I} = ∅, and
M ′ = M ∪ {⟨c′I , cIcf ⟩, ⟨cf , ϵ⟩}. In other words, we create
a planning problem with a newly created compound task,
which can only be decomposed to ϵ, appended as a suffix to
the original problem. The construction is clearly poly-time.
Notice that the optimal solution cost of P ′ is equal to P be-
cause cf can be removed with a cost of zero. Next, we prove
that cf is f-Reachable in P ′ if and only if P has a solution.
⇒ If P has a solution, by definition, there exists a se-

quence of progressions cI
p1⇝ tn2

p2⇝ · · · pm⇝ ϵ with an opti-
mal solution cost of g∗. By construction, applying the same
progression to cIcf results in tn = cf in which tn satisfies
the first condition for f-Reachability. Since the sequence of
progressions leads to a solution, the second condition is also
satisfied. Given that cf can only be decomposed to an empty
task network and the fact that h∗ is admissible, it follows that
h∗(tn, s) = 0 for all s ∈ 2F . Thus, the f-Reachability equa-
tion simplifies to

∑m
i=1 cost(pi) ≤ g∗. With further simpli-

fication, we obtain g∗ ≤ g∗ which trivially holds. In conclu-
sion, if P has a solution, cf is f-Reachable in P ′.
⇐ if cf is f-Reachable, by definition there exists a se-

quence of progressions c′I
p1⇝ tn2

p2⇝ · · · pm⇝ cfβ with
β ∈ T ∗. As cf does not appear in the original problem,
we know that the only f-Reachable progression sequence is
one that leads to cf with no suffix. Since cf was added as a
last task, and progression processes a suffix if and only if its
prefix has been progressed away (Höller et al. 2020; Alford
et al. 2012), it follows that cI is refined by this sequence.
The second condition of f-Reachability guarantees that this
refinement is a solution.

Handling Cycles
The complete elimination of cycles from a domain is neither
feasible nor desirable, as it would result in an overly restric-
tive class of problems. Such an acyclic formulation, while
potentially offering reduced computational complexity (Al-
ford, Bercher, and Aha 2015), would significantly limit the
expressive power of HTN planning (Höller et al. 2016). The
first strategy is to compute decomposition bounds on known
problems, and restrict recursion depth to that height (Alford
et al. 2016). For an arbitrary TOHTN planning problem, this
bound is known to be |C|× (2|F |)2 (Behnke, Höller, and Bi-
undo 2018). While the bound is far from ideal, it makes the
search space finite. Thus, ensuring the completeness of A*.
The second strategy is to focus on the cost of going through
a cycle. The ϵ-prefix cycle demands that no primitive ac-
tion needs to be executed to do recursion (Def. 11). In other
words, the only way of incurring a cost is eliminated. The
definitions of empty cycle (Def. 12), growing ϵ-prefix cycle
(Def. 14), and grow & shrink cycle (Def. 15) all rely on the
existence of an ϵ-prefix cycle. Thus, eliminating the ϵ-prefix
aspect of a cycle leads to the removal of all problematic cy-
cles. This can be achieved by transforming the grammati-
cal structure of a TOHTN problem to the Greibach Normal
Form (GNF) (Greibach 1965). This ensures that a primitive
task is executed before every recursion.

Theorem 7. Let P = ⟨F,C,A,M, cI , sI⟩ be a TOHTN
planning problem with an ϵ-prefix cycle. There exists a trans-
formation to problem P ′ = ⟨F,C ′, A,M ′, c′I , sI⟩ where
there is no ϵ-prefix cycle and the sets of solutions for P and
P ′ are identical.

Proof. Let G = ⟨C,A,M, cI⟩ be a context-free grammar
where C is a set of non-terminal symbols, A is a set of ter-
minal symbols (A ∩ C = ∅), M is a set of production rules,
and cI ∈ C is the initial symbol. From the GNF transforma-
tion (Greibach 1965), we know that there exists a grammar
G′ = ⟨C ′, A,M ′, c′I⟩ such that it produces the same lan-
guage as G, and all production rules (except for symbol c′I
which can go directly to ϵ) are of the form Z → aY1 . . . Yk

where a ∈ A and ∀Yi ∈ Y1 . . . Yk : Yi ∈ C ′. Thus, we can
construct P ′ = ⟨F,C ′, A,M ′, c′I , sI⟩ where there is no ϵ-
prefix cycle (even though it incurs an exponential blow-up
because of ϵ rule eliminations (Hopcroft, Motwani, and Ull-
man 2006)). Next, we need to prove that this transformation
preserves the set of solutions. It is known that the set of so-
lutions for P can be defined as Sol(P ) = L(G) ∩ Exec(P )
where L(G) is the set of words produced from grammar G
(i.e., ignoring executability) and Exec(P ) is the set of all
executable sequence of primitive tasks (i.e., ignoring hierar-
chical reachability) (Höller et al. 2014). Since F , A, and sI ,
which are concerned with state-reachability are unaltered,
it follows that all sequences of primitive tasks that are exe-
cutable in P are also executable in P ′. Hence, Exec(P ) =
Exec(P ′). From this, and the language-preservation proper-
ties of the Greibach transformation, we can establish that
Sol(P ) = Sol(P ′).

Evaluation
To assess the practical relevance of our theoretical findings,
we analyzed all 23 totally-ordered domains from the hierar-
chical track of IPC 20232. We have observed that not only at
least one form of cycle is present almost every domain, but
also in many cases there are multiple initiators. Our anal-
ysis enumerated all cycles in the TDG of the domains in
their lifted representation and ignored the f-reachability of
the initiators, which is problem-dependent. It is important
to note that the Monroe problems (partially, and fully ob-
servable) do not have a unique domain as each problem in-
stance has its own domain. We only considered the domain
associated with the first problem in the benchmark set (i.e.,
pfile01.hddl). The number of cycle initiators, as illus-
trated in Tab. 2, suggest that our investigation is not merely
a theoretical construct. To summarize, the table shows that:
1. Cycles are ubiquitous in HTN planning with only two

domains not having any form of recursion.
2. Many domains (12 out of 23) have some form of zero-

cost recursion. 5 of these domains contain an empty cy-
cle initiator, which means that any failure with tree search
A* could be attributed to incompleteness. 9 domains fea-
ture a growing ϵ-prefix cycle initiator, which not only ne-
cessities a graph search to make A* complete, but also an

2The domains are publicly available at:
www.github.com/ipc2023-htn/ipc2023-domains



Domain Compound Tasks Number of Cycle Initiators Per Type
|M | |C| |Cϵ| Unrestricted ϵ-prefix Empty Growing ϵ-prefix Grow & Shrink

AssemblyHierarchical 17 4 0 2 1 1 0 0
Barman-BDI 22 10 9 0 0 0 0 0
Blocksworld-GTOHP 8 4 0 1 1 0 1 0
Blocksworld-HPDDL 12 5 1 2 0 0 0 0
Depots 12 6 0 1 1 0 1 0
Factories-simple 10 5 3 4 3 0 3 0
Freecell-Learned-ECAI-16 245 82 16 50 32 0 32 0
Hiking 15 8 0 3 1 0 1 0
Lamps 15 6 5 5 0 0 0 0
Logistics-Learned-ECAI-16 42 14 5 5 2 0 2 0
Minecraft-Player 19 8 7 5 4 4 1 1
Minecraft-Regular 14 7 7 3 3 3 1 1
Monroe-Fully-Observable 61 39 0 5 0 0 0 0
Monroe-Partially-Observable 69 43 0 5 0 0 0 0
Multiarm-Blocksworld 12 5 1 2 0 0 0 0
Robot 11 6 1 2 0 0 0 0
Rover-GTOHP 16 10 0 1 0 0 0 0
Satellite-GTOHP 10 6 0 3 0 0 0 0
SharpSAT 34 13 9 5 4 4 0 0
Snake 5 2 2 2 0 0 0 0
Towers 8 5 1 3 1 1 0 0
Transport 6 4 0 1 1 0 1 0
Woodworking 19 6 0 0 0 0 0 0

Table 2: The table presents 23 planning domains present in the hierarchical track of IPC 2023, showing the number of methods
(|M |), compound tasks (|C|), and nullable compound tasks (|Cϵ|) for each domain. It also quantifies five different types of
cycle initiators across domains, with the most dominant cycle initiator type for each domain highlighted in bold. In the presence
of an empty cycle, a graph search is essential for completeness, regardless of the heuristic function. On the other hand, in the
presence of a growing ϵ-prefix cycle, having a CLOSED list is not sufficient to establish completeness. Graph search A*, even
with the perfect heuristic, remains incomplete in the face of a grow and shrink cycle.

informed heuristic. Grow and shrink cycles are present in
2 domains. Hence, graph search A* with perfect heuristic
may not solve every IPC problem.

Upon further analysis, it is apparent that in domains
like Transport, the growing ϵ-prefix cycle emerges naturally
from the path-finding behavior. In other words, to go from
location A to B, a vehicle first needs go to an intermediate
location C, leading to an immediate left-recursive decompo-
sition pattern. However, in Freecell-Learned-ECAI-16, the
same cycle arises from a long chain of decompositions. The
grow and shrink cycle in both of the Minecraft domains sug-
gest that such cycles also arise naturally in practice when
trying to simulate “loop until a condition is met”. This is the
case for the compound task buildrow in the Minecraft do-
mains where we want to create n rows in a certain direction.
The cycle is first initiated by a recursive call to build a sin-
gle row in a particular location, which creates the ϵ-prefix
part. The second (and the last) subtask in the method calls
another compound task to figure out how to place a block in
the adjacent location. However, if such a block is already in
place, an empty method can be applied to remove the task;
hence, forming a grow and shrink cycle. We conclude that
cycle types are an important structural consideration before

attempting to solve the problem at hand. Our experimental
setup is publicly available (Yousefi et al. 2025).

Conclusion
This study uncovers inherent limitations in the application
of A* to HTN planning. The kind of cycles that zero-cost
recursion can create is powerful enough to render even the
perfect heuristic insufficient to establish completeness. In-
terestingly, the totally-ordered case of HTN planning that
we studied in this paper are known to be decidable. Our
evaluation suggests that many of the cycles defined in this
paper happen frequently in real-world scenarios. However,
we provide a polynomial-time test to detect the problematic
decomposition patterns, and a mapping that preserves do-
main semantics while ensuring the completeness of A* in
the transformed space.
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Alford, R.; Behnke, G.; Höller, D.; Bercher, P.; Biundo-
Stephan, S.; and Aha, D. W. 2016. Bound to Plan: Ex-
ploiting Classical Heuristics via Automatic Translations of
Tail-Recursive HTN Problems. In Proc. of the 26th ICAPS,
20–28. AAAI Press.
Alford, R.; Bercher, P.; and Aha, D. W. 2015. Tight Bounds
for HTN Planning. In Proc. of the 25th ICAPS, 7–15. AAAI
Press.
Alford, R.; Shivashankar, V.; Kuter, U.; and Nau, D. S. 2012.
HTN Problem Spaces: Structure, Algorithms, Termination.
In Proc. of the 5th SoCS, 2–9. AAAI Press.
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Höller, D.; Behnke, G.; Bercher, P.; and Biundo, S. 2016.
Assessing the Expressivity of Planning Formalisms through
the Comparison to Formal Languages. In Proc. of the 26th
ICAPS, 158–165. AAAI Press.
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