
Computational Complexity of Planning for Recursive Primitive Task Networks:
Selective Action Nullification with State Preservation

Yifan Zhang , Pascal Bercher
The Australian National University

yifan.zhang@anu.edu.au, pascal.bercher@anu.edu.au

Abstract
This paper investigates fundamental aspects of Hi-
erarchical Task Network (HTN) planning by sys-
tematically exploring recursive arrangements of
primitive task networks. Working within a gen-
eral framework that aligns with recently identified
ACKERMANN-complete HTN problems, we map
the computational complexity across various re-
cursive configurations, revealing a rich complex-
ity landscape. Through a novel proof technique
that we call selective action nullification with state
preservation, we demonstrate that even a highly
restricted class of regular HTN problems remains
PSPACE-complete, establishing a profound con-
nection to classical planning. We hope these find-
ings contribute to a deeper and broader understand-
ing of the theoretical foundations of HTN planning.

1 Introduction
Hierarchical Task Network (HTN) planning is an expressive
framework for formalizing AI planning problems. In this ap-
proach, an initially given task network — potentially contain-
ing both compound and primitive tasks — needs to be bro-
ken down into an executable action plan. This is achieved by
recursively decomposing compound tasks into subtasks until
only primitive tasks remain, which must be executable and
satisfy a given goal [Bercher et al., 2019].

Although HTN planning is undecidable in general [Erol
et al., 1996], syntactic restrictions have been identified that
yield lower, decidable fragments. These include totally or-
dered problems, known to be EXPTIME-complete [Erol et
al., 1996; Alford et al., 2015]; acyclic problems (where re-
cursion does not occur), known to be NEXPTIME-complete
[Alford et al., 2015]; and regular and tail-recursive prob-
lems (both restricting where recursion occurs), known to be
PSPACE- [Erol et al., 1996] and EXPSPACE-complete [Al-
ford et al., 2015], respectively. The most recent discovery es-
tablishes ACKERMANN-completeness [Dekker and Behnke,
2024] for problems where each task network contains at most
one compound task (relaxations exist, as we elaborate on
later). Most of these results have also been extended to hybrid
planning, a combination of HTN and Partial Order Causal
Link (POCL) planning [Bercher et al., 2022]. Additionally,

delete relaxation has been studied, reducing the complexity
to P- and NP-completeness [Alford et al., 2014]. These re-
sults, while representing an important contribution to the un-
derstanding of HTN planning in its own right, have also had a
significant impact on approaches for solving HTN problems
efficiently. For example, task insertion and delete relaxation
serve as the basis for both polynomial-time computable and
NP-complete heuristics [Höller et al., 2018; 2020a; 2020b;
Olz et al., 2024]. Furthermore, tail-recursiveness has been
exploited in compilations to classical planning [Alford et al.,
2016; Behnke et al., 2022].

Building on the ACKERMANN-complete problems intro-
duced by Dekker and Behnke [2024], we investigate how spe-
cific problem properties — such as the structure of tasks in
the initial task network or the inclusion of a goal description
— may contribute to computational hardness. This analysis
reveals a more comprehensive complexity landscape, as sum-
marized in Table 1. In addition to deepening our understand-
ing of HTN problem structure, our work strengthens a well-
known result in HTN planning that establishes the PSPACE-
completeness of regular problems [Erol et al., 1996]. We do
so by imposing further significant restrictions under which
the problem, perhaps unexpectedly, remains PSPACE-hard.
We also present a novel proof technique, which we suggest
may offer broader utility in both HTN and classical planning
complexity analyses.

2 Preliminaries
We start by defining the HTN planning framework, followed
by a discussion of known problem restrictions identified in
the literature.

2.1 HTN Planning
We present a formalization that follows the approach outlined
by the combined framework of Geier and Bercher [2011] and
Bercher et al. [2019]. The exposition begins with the defi-
nition of task networks, which collect tasks in a partial order.
To allow task duplication, we prefill the task networks with
strings that serve as placeholders (aka “task IDs”), which are
then mapped to actual tasks, referred to as task names, since
sets do not permit duplicates. This mapping is not necessar-
ily injective, allowing multiple occurrences of the same task
name within the task network.



Recursion Type Goal Constraint Initial Primitive Computational ReferencesTasks Constraints Complexity

regular

goal-free
execution-optional O(1) Proposition 1
iteration-invariant NP-complete Theorem 3

unconstrained NP-complete Theorem 3

unconstrained
execution-optional PSPACE-complete Theorem 2
iteration-invariant PSPACE-complete Corollary 1

unconstrained PSPACE-complete Corollary 1

tail-recursive
goal-free iteration-invariant PSPACE-complete Theorem 4

unconstrained PSPACE-complete Theorem 4

unconstrained iteration-invariant PSPACE-complete Corollary 2
unconstrained PSPACE-complete Corollary 2

arbitrary

goal-free
execution-optional O(1) Proposition 1
iteration-invariant ACKERMANN-complete Corollary 3

unconstrained ACKERMANN-complete Theorem 1

unconstrained
execution-optional ACKERMANN-complete Corollary 4
iteration-invariant ACKERMANN-complete Corollary 4

unconstrained ACKERMANN-complete Corollary 4

Table 1: Computational complexity of deciding plan xxistence in recursive primitive task network planning across the constraint spectrum.
See Definition 11 for the meanings of goal-free, execution-optional, and iteration-invariant. Note that imposing the execution-optional
constraint in the tail-recursive case yields a class coinciding with imposing it in the regular case.

Definition 1 (Task Network). A task network tn over a set
N (of task names) is a partially ordered set equipped with a
mapping rule, denoted as (T,≺, α), where

• T is a finite (possibly empty) set of strings called tasks;
• ≺ is a strict partial order on T ;
• α ∶ T → N assigns a task name to each task in T .
Henceforth, we may simply refer to the task names as tasks

when the contextual meaning can be readily inferred. Given a
set N , let TN denote the set of all (possibly infinitely many)
task networks over N . Let ε denote the empty task network
(∅,∅,∅). In visualizations, we use elliptical shapes to repre-
sent task networks and groups of tasks within them that could
themselves be interpreted as smaller task networks. Partial
orderings are indicated using standard arrows. When task net-
works (ellipses) appear at either end of arrows, the ordering
constraint applies to all tasks contained within that network.

Two task networks distinguished by different placehold-
ers would be equivalent when they designate the identical ar-
rangement of tasks. We thus introduce the definition of iso-
morphism between task networks: Two task networks tn =

(T,≺, α) and tn′ = (T ′,≺′, α′) are said to be isomorphic, de-
noted by tn ≅ tn′, iff there exists a bijection σ ∶ T → T ′ such
that

∀(t, t′) ∈ T 2, (t ≺ t′ ↔ σ(t) ≺′ σ(t′)) ∧ (α(t) = α′(σ(t))).

Now we proceed to formalize Hierarchical Task Network
(HTN) problems. In HTN planning, the states of the world
could be characterized by a finite number of strings, which
are gathered within a universal set called the set of facts. The
powerset of the set of facts then forms the space of all pos-
sible states. While the state space defines the environment
in which planning occurs, HTN planning focuses on tasks as
abstract descriptions of activities to be performed. Tasks are

divided into two categories: primitive tasks (also called ac-
tions, which are the same as in classical planning) and com-
pound tasks. Primitive tasks are directly executable actions,
as detailed in the following definition.

Definition 2 (Action). Let F be a finite set of facts. An
action a is a 4-tuple consisting of a positive precondition
prec+(a) ⊆ F , a negative precondition prec−(a) ⊆ F , add
effects eff +(a) ⊆ F , and delete effects eff −(a) ⊆ F . Given a
state s ∈ 2F , the execution of a follows the rules as below:

• a is applicable in s iff prec+(a) ⊆ s and prec−(a)∩s = ∅;
• if a is applicable in s, executing a causes the state s to

transition into the new state (s/eff −(a)) ∪ eff +(a).

For convenience, when we describe an action a, we may
combine prec+(a) and prec−(a) into a single set, prec(a). In
this unified set, facts from prec+(a) are denoted as f1, f2, . . .,
while those from prec−(a) are expressed as ¬f1,¬f2, . . ..
Similarly, we combine eff +(a) and eff −(a) into a single set,
eff (a), where facts from eff +(a) are presented as f1, f2, . . .,
and those from eff −(a) as ¬f1,¬f2, . . .. In visualizations, an
action is depicted as a rectangle, with its preconditions dis-
played as a set positioned in front of it and its effects as a set
behind it.

Note that actions in both hierarchical and non-hierarchical
planning are often defined without negative preconditions.
Nevertheless, we introduce them here, as they facilitate our
later proofs. This is however not a restriction, because it is
well known that negative preconditions can be compiled away
[Gazen and Knoblock, 1997], so our results hold equally in
the absence of these preconditions.

In contrast to actions, compound tasks cannot be directly
executed. Instead, they need to be refined into task networks
(until they finally become primitive) as specified by the de-



composition methods, defined as follows.

Definition 3 (Method). A (decomposition) method m =

(c, tn) decomposes a task network tn1 = (T1,≺1, α1) into
a new task network tn2 via substituting task t, denoted as

tn1
t,m
Ð→ tn2, iff t ∈ T1, α1(t) = c, and there exists a task

network tn′ = (T ′,≺′, α′) with tn′ ≅ tn and T ′ ∩T = ∅, and1

tn2 = ((T1/{t}) ∪ T
′,≺1 ∪ ≺

′
∪ ≺

∗, α1 ∪ α
′
) where

≺
∗
={(t1, t2) ∈ T1 × T

′
∣ (t1, t) ∈ ≺1} ∪

{(t1, t2) ∈ T
′
× T1 ∣ (t, t2) ∈ ≺1}

Therefore, a task network that contains at least one com-
pound task can potentially be transformed into a completely
primitive task network by recursively applying decomposi-
tion methods. In visualizations, compound tasks are repre-
sented by circles and methods by open-headed arrows: an
open-headed arrow originating from a compound task (cir-
cle) and pointing to a task network (ellipse) indicates that the
compound task can be decomposed into the task network via
a defined method.

Now we synthesize all the aforementioned descriptions
into the following formal framework.

Definition 4 (HTN Domain). An HTN planning domain D ∶=

(F,NC ,NP ,M, δ) is a 5-tuple where
• F is a finite set of strings called facts;
• NC is a finite set of strings called compound task names;
• NP is a finite set of strings called primitive task names;
• M ⊆ NC ×TNC⊍NP

is a finite set of methods;
• δ ∶ NP → (2F )4 maps primitive task names to actions.

An HTN problem will also specify a concrete initial task
network, initial state and goal.

Definition 5 (HTN Problem). An HTN planning problem
P ∶= (D; tnI , sI , g) is a 4-tuple where

• D = (F,NC ,NP ,M, δ) is an HTN planning domain;
• tnI ∈ TNC⊍NP

is an initial task network;
• sI ∈ 2F is an initial state;
• g ⊆ F is a goal.

Literature often defines HTN problems without a goal,
which can be simulated in our formalization by simply using
the empty set as the goal. Having a goal description allows to
study its impact on the computational complexity, which has
a notable impact especially in severely restricted cases such
as those we study later.

To solve an HTN problem, a planner needs to continually
refine the initial task network, ultimately reaching a primitive
one — a task network that only contains the lowest level, di-
rectly executable actions. These actions in the resulting task
network should possess the property that, when they are ar-
ranged into a single linear sequence in a specific way while
adhering to the partial order constraints (such an arrangement
is known as a linearization), they can be executed consecu-
tively. That means the first action in the sequence is applica-
ble in the initial state, and each subsequent action is applica-
ble in the state that results from the execution of all preceding

1The ordering and labelling of tn2 is restricted on (T1/{t})∪T
′.

actions in the sequence. Such a linearization is said to be ex-
ecutable in the initial state. It is additionally required that the
goal must be a subset of the resulting state of executing the
entire linearization from the initial state. The definition below
encapsulates the concepts discussed above.
Definition 6 (Solution). A task network tnS is a solution to
an HTN planning problem P = (F,NC ,NP ,M, δ; tnI , sI , g)
iff

• it can be obtained via applying a sequence of decompo-
sition methods to tnI ;

• it contains no compound tasks;
• it possesses a linearization of its (primitive) tasks that is

executable in sI , and executing this linearization in sI
results in a state s ⊇ g.

The preceding discussion outlined the established frame-
work for characterizing HTN problems. The subsequent sec-
tion introduces several well-studied restricted classes of HTN
problems, along with their corresponding plan existence com-
plexity results. Together, these form the theoretical founda-
tion for our novel contributions.

2.2 Plan Existence and Problem Restrictions
In this paper, we investigate the computational complex-
ity of deciding whether there exists a solution for a given
HTN problem. Such decision problems are called plan ex-
istence problems of HTN planning. For general HTN plan-
ning (i.e. given arbitrary HTN problems with no restrictions),
the plan existence problem is undecidable [Erol et al., 1996;
Geier and Bercher, 2011]. To address the undecidability
while still maintaining much of the HTN framework’s expres-
sive power, a prevalent approach involves examining decid-
able fragments of the general problem through the introduc-
tion of targeted restrictions.

Given the inherent difficulty of handling compound tasks, a
natural approach is to constrain the patterns in which they oc-
cur. Regularity introduces strict limitations on the compound
tasks present in the networks. It permits at most one com-
pound task within each task network while enforcing stronger
ordering restrictions.
Definition 7 (Regularity). An HTN problem is regular if the
initial task network and the task networks in all decomposi-
tion methods satisfy any of the following:

• they only contain primitive tasks;
• they contain exactly one compound task, and that com-

pound task is ordered as the last one with respect to all
other tasks in the network.

Deciding plan existence for regular HTN problems is
PSPACE-complete [Erol et al., 1996], which means they are
exactly as computationally hard as classical, non-hierarchical
problems [Bylander, 1994].

A less restrictive approach involves, rather than directly
controlling compound tasks, the establishment of constraints
on indefinite “loops” (i.e., compound tasks that can even-
tually be refined into task networks containing themselves)
in the process of refinement. Since arbitrarily behaving
loops usually result in non-termination, restricting their oc-
currences might lead to decidability. The next class does that,
achieving a finite search space (and hence decidability) by



using progression search [Alford et al., 2012]. It’s called tail-
recursive and generalizes regular problems.

Definition 8 (Tail-Recursion). An HTN problem is tail-
recursive if there exists a total preorder ≤r on the task names,
such that for every method (c, (T,≺, α)),

• if there is a last task tr ∈ T , then α(tr) ≤r c;
• for all non-last tasks t ∈ T , α(t) ≤r c and ¬(c ≤r α(t)).

Deciding plan existence for tail-recursive HTN problems
is EXPSPACE-complete [Alford et al., 2015]. Until re-
cently, this was the computationally hardest class known to
be decidable. However, Dekker and Behnke [2024] stud-
ied various other restrictions (which can be combined with
tail-recursiveness) that also lead to decidability but are sig-
nificantly more complex, being ACKERMANN-complete. We
present their definitions below.

Definition 9 (ACKERMANN-Complete HTN problems).
• Let I denote the class of HTN problems with the prop-

erty that any compound task in any task network (i.e., the
initial task network and the task networks in all decomposi-
tion methods) is minimal (an elementm in a partially ordered
set (S,<) is minimal iff ∀a ∈ S,¬(a <m)).

• Let F denote the class of HTN problems with the property
that any compound task in any task network is maximal (an
elementm in a partially ordered set (S,<) is maximal iff ∀a ∈
S,¬(m < a)).

• Let H denote the class of HTN problems with the property
that any task network contains at most one compound task.

• Let B denote the class of HTN problems with the property
that any primitive task network in any decomposition method
is empty (i.e., primitive tasks can only be introduced via the
initial task network or via a method that also adds a com-
pound task).

• Let L denote the class of HTN problems with the property
that only one compound task name and two decomposition
methods exist in the entire domain.

The following results were achieved:

Theorem 1 (Dekker and Behnke, 2024 (Theorem 9)). Let S
be a class of HTN problems satisfying I ∩ F ∩ H ∩ B ∩ L ⊆

S ⊆ I ∪ F ∪H. For problems in S with empty goals, the plan
existence problem is ACKERMANN-complete.

3 Complexity Analyses
In this study, we draw attention to an important yet under-
explored category of HTN problems with fundamental impli-
cations for the field. Specifically, we investigate the compu-
tational complexity of plan search when dealing with self-
replicating primitive task networks. The general semantic
framework should capture scenarios in which an arbitrary
primitive task network, upon execution, produces identical
copies of itself through an unbounded duplication process.

To comprehensively characterize such a recursively ex-
panding problem class within the HTN planning formaliza-
tion, let us begin with an arbitrary primitive task network PrI
(potentially empty) equipped with an arbitrary partial order.
We augment PrI with a single compound task C to form the
initial task network, imposing no constraints on the ordering

Figure 1: Depiction of recursive primitive task network problems.

relations between C and the primitive tasks in PrI to main-
tain generality. Note that this does not imply C is unordered
relative to those primitive tasks but rather refers to any partial
ordering among them. The compound task C admits exactly
two decomposition methods: either it reduces to an empty
task network, or it decomposes into a combination of a prim-
itive task network Pr+ (with arbitrary partial order) and an-
other instance of C . This construction enables unbounded
recursive expansion of the task network. For maximal flex-
ibility, no ordering constraints are enforced between C and
the primitive tasks in Pr+, and PrI need not equal Pr+, thus
allowing the initial iteration to differ from subsequent ones.

Figure 1 illustrates this problem class. In Figure 1, a ques-
tion mark ? indicates that the corresponding element may or
may not exist, with its index (∗) distinguishing it from other
such elements. For example, in the configuration where “the
elements marked ?(1) and ?(2) exist and element marked ?(3)
does not exist”: (i) There exists an ordering constraint in the
initial task network requiring the compound task to follow all
other primitive tasks (i.e., it is the last task). (ii) Similarly,
within the method’s task network, the compound task is or-
dered after all other primitive tasks. (iii) A goal does not ex-
ist, meaning the final state can be arbitrary as long as all tasks
are executed. (iv) Primitive tasks may or may not be present
in the initial task network. (v) The primitive tasks in the ini-
tial task network may form a sub-task network that may or
may not be identical to the one in the method’s task network.

We will analyze each of these structural restrictions in the
following sections.

The class of planning problems characterized above el-
egantly aligns with the formal framework by Dekker and
Behnke [2024]. The following definition provides a rigorous
yet succinct formalization of the structural properties desired.
Definition 10 (r-Primitiveness). The class of recursive prim-
itive task network planning problems, hereafter referred to as
r-primitive problems, is the set H ∩B ∩L.

To ensure precise analysis, we will examine each restric-
tion according to the following definitions. To enhance un-
derstanding, we will also explain each restriction by referring
to the visualization above.
Definition 11 (r-Primitive Restrictions). Let P = (F,NC ,
NP ,M, δ; tnI , sI , g) be an r-primitive problem. Denote



NC = {C} and M = {(C , ε), (C , tn+)}. Then,
• P is goal-free iff g = ∅ (i.e, the element annotated by
?(3) in Figure 1 does not exist).

• P is execution-optional iff tnI ∈ TNC
(i.e, the element

annotated by ?(4) in Figure 1 does not exist).
• P is iteration-invariant iff there exists a primitive task

network Pr ∈ TNP
such that tnI and tn+ can each be

obtained by augmenting Pr with C under some partial
ordering (i.e., the element annotated by ?(5) in Figure 1
exists). Note that C can be inserted anywhere within the
task network — even “in between” Pr — and its po-
sition may differ between the constructions of tnI and
tn+. This also means that transitivity may induce ad-
ditional orderings, potentially making tnI and tn+ non-
equivalent, even though both originate from Pr .

Our investigation proceeds through three analytical stages.
We begin by establishing regularity conditions for the r-
primitive problem class. Subsequently, we expand our analy-
sis by relaxing the regularity constraint to tail-recursion. In
the final stage, we complete the spectrum by withdrawing
any constraints on the recursion type, thereby encompassing
the entire class. We analyze the computational complexity as
we progress through each stage, examining all subclasses that
arise from the criteria in Definition 11.

First, we state the following proposition that trivially fol-
lows from the fact that in the respective case, the empty task
network always forms a trivial solution.
Proposition 1. Deciding plan existence for goal-free and
execution-optional r-primitive problems is in O(1).

3.1 On Regularity Conditions
This section examines regular r-primitive problems (elements
marked ?(1) and ?(2) in Figure 1 both exist). As a subclass of
regular HTN problems, this problem class retains PSPACE
membership in terms of computational complexity. We prove
that it is also PSPACE-hard.
Theorem 2. Deciding plan existence for regular execution-
optional r-primitive problems is PSPACE-complete.

Proof. Membership inherits from the regular class. We prove
hardness by reduction from classical planning.

Let P = (F,A, sI , g) be an instance of a classical plan-
ning problem, with F = {f1, . . . , fm} and A = {a1, . . . , an}.
We construct a regular execution-optional r-primitive prob-
lem P∗ = (F ∗,NC ,NP ,M, δ; tnI , s

∗
I , g

∗), where F ∗ = F ∪

{token,flag}; NC = {C}; s∗I = sI ; g∗ = g; and

NP = {Initializer,Exclusion-Terminator,Restorer,
Finalizer} ∪ {a∗1, . . . , a

∗
n} ∪ {Enabler1, . . . ,

Enablern} ∪ {f1-Excluder, . . . , fm-Excluder}.

M, δ, tnI are represented by Figure 1, with the following con-
figurations: Elements marked ?(1) and ?(2) both exist; the el-
ement marked ?(4) does not exist; Pr+ is shown in Figure 2.

Since C is ordered after the tasks in Pr+, the execution
of tasks within Pr+ cannot intertwine with any other poten-
tial occurrence of Pr+ resulting from decomposition. We
demonstrate that completing all tasks within Pr+ at a state

Figure 2: Depiction of proof of Theorem 2.

s is equivalent to selecting exactly one action from the set A
and executing it at the state s.

At s, the Initializer will be executed first, resulting in
s ∪ {token}. Then, among the three branches, only the left
one is executable because the others need the flag . Among
actions in {a∗1, . . . , a

∗
n}, exactly one of them, say a∗k, will be

executed. This results in (s/eff −(ak)) ∪ eff +(ak) ∪ {flag},
consuming token to prevent others from executing. Denote
this state as {fα1 , . . . , fαp}∪{flag}. At this state, only actions
in {fα1

-Excluder, . . . , fαp
-Excluder} ⊆ {f1-Excluder, . . . ,

fm-Excluder} can be executed, resulting in the state {flag}.
Now, only Exclusion-Terminator can be executed, removing
flag to prevent any remaining fact excluders from executing.
All actions in {Enabler1, . . . ,Enablern} are then executable
in arbitrary order. Note that for all i ∈ [1, k−1] ∪ [k+1, n],
Enableri will always make a∗i executable right after. There-
fore, there must exist an execution sequence to execute a∗1,
. . . , a∗k−1, a

∗
k+1, . . . , a

∗
n together with those enablers, so that

Restorer can be executed afterwards. Its execution always
results in the state {flag, f1, . . . , fm}, optionally including
token as well. The remaining actions in {f1-Excluder,
. . . , fm-Excluder}, namely {fi-Excluder ∣ i ∈ [1,m]/{α1,
. . . , αp}}, cannot be executed until Restorer has been exe-
cuted. But once Restorer is executed, they can all be exe-
cuted, resulting in the state {fi ∣ i ∈ [1,m]/([1,m]/{α1, . . . ,
αp})} ∪ {flag}, optionally including token as well. After re-
moving token and flag by Finalizer, the state is exactly the
same as (s/eff −(a)) ∪ eff +(a), i.e., the state resulting from
executing ak at s.

Now we see that P has a solution iff P∗ has a solution. If P
has a solution aβ1 , . . . , aβl

, then P∗ also has a solution, where
C is decomposed into Pr+ l times and then into ε. The re-
sulting primitive task network is equipped with a linearization
such that the i-th execution of the actions in Pr+ is equivalent
to executing aβi for i ∈ [1, l]. Conversely, if P∗ has a solu-



tion tns consisting of l occurrences of Pr+, then P also has a
solution of length l where each action is equivalent to the oc-
currence of Pr+ in the corresponding ordering position.

The proof above illustrates a mechanism capable of select-
ing a specific range of actions and nullifying their effects.
Previously, most methodologies for discarding unused ac-
tions failed to preserve the state following the discarding pro-
cess, analogous to side effects in imperative programming.
However, our novel approach demonstrates that it is feasible
to discard unused actions without introducing side effects, en-
suring that the state remains unchanged after the completion
of the entire discarding mechanism. Furthermore, this proof
enriches the standard toolkit available to researchers in HTN
planning by addressing the frequent requirement for an “undo
action” capability in various research contexts. The proof also
possesses the potential for straightforward adaptation to meet
these demands effectively. An example of such adaptation
will be presented in the subsequent section.

The complexity result remains valid under the following
conditions.

Corollary 1. Deciding plan existence for regular r-primitive
problems is PSPACE-complete. This complexity result holds
true even when the problems are further constrained to be
iteration-invariant.

Proof. Without the iteration-invariant constraint, the result
follows directly — Membership inherits from the regular
class. Hardness is guaranteed by the fact that this problem
class is a superclass of the class described in Theorem 2.

We then prove that the result holds under the iteration-
invariant constraint. Membership inherits from the regular
class. Hardness follows the same reduction as in the proof of
Theorem 2, with the sole modification of adding to the input
domain a null action that has no preconditions and no effects.
This addresses the case of a zero-length plan (i.e., when the
goal is already a subset of the initial state) by allowing the
selection of the null action in the required iteration.

While computationally as hard as regular HTN problems,
regular r-primitive problems cannot accommodate compiling
goals away unless NP equals PSPACE. We prove this by pre-
senting the following complexity result.

Theorem 3. Deciding plan existence for regular goal-free r-
primitive problems is NP-complete. This complexity result
holds true even when the problems are further constrained to
be iteration-invariant.

Proof. It suffices to prove: (1) the NP membership of the
problem class without the iteration-invariant constraint, and
(2) the NP-hardness of the problem class with it.

(1) We prove this by reducing to the class of primitive task
network planning problems. Let P be an arbitrary instance
of a regular goal-free r-primitive problem. Assume that P is
represented by Figure 1. Then, elements marked ?(1) and
?(2) both exist, but the element marked ?(3) does not. If PrI
possesses an executable linearization, P has a solution. If
PrI does not possess an executable linearization, P must be

unsolvable because the order restriction prevents it from in-
tertwining with other occurrences of itself. Hence, planning
for P is equivalent to planning for PrI .

(2) We prove this by reduction from the class of primitive
task network planning problems. Given any primitive task
network Pr , we can construct a regular iteration-invariant
goal-free r-primitive problem P to simulate planning for one
or more sequentially ordered occurrences of Pr . The only
modification we need is to add a fact, a token, and a limiting
action, with the token in its precondition and delete set. This
restricts Pr to iterate at most once. Then, P has a solution iff
Pr possesses an executable linearization.

Most HTN problem formalizations exclude explicit goal
representations, assuming that goals can be readily compiled
into other constructs. However, we demonstrate that goal
compilation is not universally achievable. Therefore, the in-
clusion or exclusion of explicit goal representations should be
contextually evaluated, accounting for the specific constraints
and characteristics of each problem class.

3.2 On Tail-Recursion Conditions
We proceed by examining the tail-recursive r-primitive prob-
lems (i.e., the element marked ?(2) in Figure 1 exists). Note
that the class of regular execution-optional r-primitive prob-
lems is identical to that of tail-recursive execution-optional r-
primitive problems. Therefore, this class will not be revisited
in this section. Our analysis begins with goal-free problems
and then extends to those that do not respect this constraint.

Theorem 4. Deciding plan existence for tail-recursive goal-
free r-primitive problems is PSPACE-complete. This com-
plexity result holds true even when the problems are further
constrained to be iteration-invariant.

Proof. It suffices to prove: (1) the PSPACE membership of
the problem class without the iteration-invariant constraint,
and (2) the PSPACE-hardness of the problem class with it.

(1) Let P be a tail-recursive goal-free r-primitive problem.
Assume Figure 1 represents the structure of P. Then, the el-
ement marked ?(2) exists, but the element marked ?(3) does
not. Consider applying progression search to P. The key ob-
servation is that, since C is ordered after all actions in Pr+
within the method, it cannot be replaced by a new occurrence
of Pr+ before all actions in the existing Pr+ have been re-
moved from the search fringe. Therefore, the search fringe
can contain at most all tasks from PrI , all tasks from Pr+,
and C , which are ∣PrI ∣ + ∣Pr∣ + 1 tasks. This means that,
during its execution, the progression search only uses space
bounded by a polynomial in the input size. Hence, by Sav-
itch’s reachability algorithm, the progression search is guar-
anteed to terminate on P. Thus, PSPACE membership holds
for this class.

(2) We prove this by reduction from the class of regu-
lar iteration-invariant r-primitive problems, which has been
proven to be PSPACE-complete in Corollary 1. Let P =

(F,NC ,NP ,M, δ; tnI , sI , g) be an arbitrary instance of a
regular iteration-invariant r-primitive problem. Let g = {g1,
. . . , gm}. Since P is iteration-invariant, there must exist a task
network Input-Pr satisfying the conditions specified in the



Figure 3: Depiction of proof of Theorem 4.

definition of iteration-invariant. We construct a tail-recursive
goal-free r-primitive problem P∗ = (F ∗,N∗

C ,N
∗
P ,M

∗, δ∗;
tn∗I , s

∗
I , g

∗) accordingly, where F ∗ = F ∪ g; N∗
C = {C};

s∗I = sI ; g∗ = ∅; and NP = {Restorer,Goal-Guarantor} ∪
{g1-Excluder, . . . , gm-Excluder}. M,δ, tnI are represented
by Figure 1, with the following configurations: The elements
marked ?(2), ?(4), ?(5) all exist; the element marked ?(3) does
not exist; PrI (as well as Pr+) is depicted in Figure 3.

In tnI , C is ordered after Input-Pr and before Goal-
Guarantor. By transitivity, Goal-Guarantor is ordered as
the last task in tnI . Clearly, the construction of P∗ ensures
that Goal-Guarantor remains the last task in any task net-
work resulting from applying any sequence of decomposi-
tion methods. By executing Goal-Guarantor eventually, it
is guaranteed that g is a subset of the final state. However, g
need not be a subset of the intermediate states resulting from
each execution of Input-Pr . Moreover, after executing an
occurrence of Input-Pr , the state remains unchanged until
any potential subsequent occurrences of Input-Pr are exe-
cuted. We provide the justification below.

When executing PrI or Pr+ in state s, a subset of ac-
tions {gα1 -Excluder, . . . , gαp -Excluder} ⊆ {g1-Excluder,
. . . , gm-Excluder}, where {gα1 , . . . , gαp} ⊆ s, will be exe-
cuted to reach the state s∗ ∶= s/g. Then, Restorer becomes
executable and, when executed, results in state s∗ ∪ g. This
allows Goal-Guarantor to be executed, unless the current
task network is the initial one where it is already ordered as
the last task. Finally, the remaining goal excluders, namely
actions in {gi-Excluder ∣ i ∈ [1,m]/{α1, . . . , αp}}, can be
executed, transforming state s∗ ∪ g into

(s∗ ∪ g)/(g/{gα1 , . . . , gαp}) = ((s/g) ∪ g)/(g/(g ∩ s))

= (s ∪ g)/(g/s) = s

Therefore, when proceeding to execute Input-Pr , the state
remains s, the same as before executing PrI or Pr+.

The above justifies the validity of goal compilation, and
thus P has a solution iff P∗ does.

This proof demonstrates another application of the state-
preserving action nullification mechanism. While it repre-
sents a lighter implementation — conditionally discarding
only the action encoding the goal — it employs the same prin-
ciples as in the previous section thus reinforcing the mecha-
nism’s effectiveness and broad applicability.

Unlike regular r-primitive problems, the current class does
not become computationally easier in the absence of goals, as

demonstrated by the theorem below.
Corollary 2. Deciding plan existence for tail-recursive r-
primitive problems is PSPACE-complete. This complexity
result holds true even when the problems are further con-
strained to be iteration-invariant.

Proof. It suffices to compile away the goals for the problem
class without the iteration-invariant constraint. This can be
achieved by simply adding an additional action with the goal
as its precondition and ordering it as the last task in the ini-
tial task network. After this modification, the problem still
satisfies the requirement of being tail-recursive.

This corollary also indicates that relaxing the ordering re-
strictions of the compound task within the initial task net-
work for the regular r-primitive problem class does not yield
a harder class, but instead preserves the same complexity.

3.3 On Arbitrary Recursion Types
We complete our investigation by analyzing the general class
of r-primitive problems. A direct application of Theorem 1
reveals that deciding plan existence for goal-free r-primitive
problems is ACKERMANN-complete. We extend this result to
encompass additional subclasses, beginning with a proof for
a more restricted subclass.
Theorem 5. Let U denote the intersection of the class of
r-primitive problems and I ∩ F. Then, deciding plan exis-
tence for goal-free and iteration-invariant problems within U
is ACKERMANN-complete.

Proof. Membership follows from a direct application of The-
orem 1. We prove ACKERMANN-hardness by reduction from
the class of goal-free problems in I ∩ F ∩ H ∩ B ∩ L, which
is known to be ACKERMANN-complete by Theorem 1. Let
P = (F,NC ,NP ,M, δ; tnI , sI , g) be an arbitrary instance
of this class. In this case, g = ∅. Let a1, . . . , am de-
note the primitive tasks appearing in the initial task net-
work. We refer to them collectively as PrI . Similarly, let
b1, . . . , bn be the primitive tasks in the nonempty task net-
work within the method, collectively referred to as Pr+. We
construct a goal-free iteration-invariant r-primitive problem
P∗ = (F ∗,N∗

C ,N
∗
P ,M

∗, δ∗; tn∗I , s
∗
I , g

∗) accordingly, where
F ∗ = F ∪ {flag, s1, s2, s3} ∪ {token1, . . . , tokenm}; N∗

C =

{C}; s∗I = sI ∪ {token1, . . . , tokenm}; g∗ = ∅; and

NP ={s1-Starter, s2-Starter, s3-Starter,Finalizer}
∪ {a∗1, . . . , a

∗
m} ∪ {b∗1, . . . , b

∗
n}

∪ {Pr I -Enabler1, . . . ,Pr I -Enablerm}

∪ {Pr+-Enabler1, . . . ,Pr+-Enablern}.

M, δ, tnI are represented by Figure 1, with the following con-
figurations: The elements marked ?(4) and ?(5) both exist; the
elements marked ?(1), ?(2), ?(3) do not exist; PrI (as well as
Pr+) is depicted in Figure 4.

Actions within Input-PrI and Input-Pr+ inherit the orig-
inal partial ordering. When planning for P∗, the states of P∗
can be classified into 5 stages: (1) action stage — states ex-
cluding s1, s2, s3; (2) Pr+-trashing stage — states including
s1 but not s2, s3; (3) PrI -trashing stage — states including



Figure 4: Depiction of proof of Theorem 5.

s2 but not s1, s3; (4) supplementary stage — states includ-
ing s3 but not s1, s2; (5) finalizing stage — states including
s1, s3 but not s2. In the action stage, Input-PrI can be exe-
cuted exactly once regardless of the number of occurrences.
Input-Pr+ can be executed either an unlimited number of
times or not at all. Note that it is not possible for only part
of Input-Pr+ to be executed, because every action in it adds
flag to the state, which prevents entry into the Pr+-trashing
stage used to discard actions that are not executed. Depend-
ing on whether Input-Pr+ has been executed at least once,
two scenarios arise:

In the first scenario, where Input-Pr+ is not executed at
all, the process enters the Pr+-trashing stage to discard all oc-
currences of Input-Pr+. It then proceeds to the PrI -trashing
stage to discard any remaining occurrences of Input-PrI (in
case there exists at least one occurrence of Pr+, i.e., ad-
ditional copies of Figure 4). Finally, it enters the supple-
mentary stage and executes Finalizer. This scenario corre-
sponds to the case in which P has a solution that contains
only Input-PrI .

In the second scenario, where Input-Pr+ is executed at
least once, the process enters the PrI -trashing stage to discard
any remaining occurrences of Input-PrI . Then, it enters the
supplementary stage and executes Finalizer, which enables
entry into the finalizing stage to assist in discarding actions
related to the Pr+-trashing stage. This scenario corresponds
to the case where P has a solution that includes Input-PrI
and one or more occurrences of Input-Pr+.

Therefore, P∗ precisely simulates the mechanism of P,
which implies that P∗ has a solution iff P has a solution.

The above theorem reveals the complexity of problems fur-
ther constrained by the condition that each occurrence of the
compound task is isolated from other (primitive) tasks within
the same task network. This result, specific to the compound-
isolated subclass, illustrates the minimum complexity of the

broader class in which that constraint is removed. Conse-
quently, we establish the following corollary.
Corollary 3. Deciding plan existence for goal-free iteration-
invariant r-primitive problems is ACKERMANN-complete.

Proof. Membership follows from direct application of Theo-
rem 1. Hardness follows from the fact that the class described
in Theorem 5 is a subclass of this class.

The r-primitive problem class possesses sufficient expres-
sive power to accommodate goal compilation, ensuring that
the complexity class remains unchanged when working with
goals, as demonstrated below.
Corollary 4. Deciding plan existence for r-primitive prob-
lems is ACKERMANN-complete. This complexity result holds
true even when the problems are further constrained to be
execution-optional or iteration-invariant.

Proof. Membership follows from the canonical compilation
of goals. Given an arbitrary r-primitive problem, one can
compile away the goal by constructing a goal-simulating ac-
tion — an action whose precondition is exactly the goal —
and placing it as the last task in the initial task network.
Note that this compilation may yield a problem that is nei-
ther execution-optional nor iteration-invariant, but the result-
ing problem still belongs to the class H, which is ACKER-
MANN-complete.

For the class of r-primitive problems and the class of
iteration-invariant r-primitive problems, their hardness fol-
lows from the hardness of their corresponding goal-free ver-
sions (i.e., each class with the additional goal-free constraint).
To prove the hardness of the class of execution-optional r-
primitive problems, consider the class described in Theo-
rem 5. Removing the goal-free constraint from this class
preserves the ACKERMANN-hardness. Given an arbitrary
problem (possibly with a non-empty goal) in this class, we
can reduce it to an execution-optional r-primitive problem
by adding a new fact to the goal and constructing an action
whose effect is to add this fact. Then, the primitive tasks in
the initial task network can be safely removed, as long as the
aforementioned action is included as an isolated task (i.e., un-
ordered with respect to the other tasks) within the method’s
task network. This ensures that the non-trivial decomposition
must be applied at least once.

4 Conclusion
We investigated the computational complexity of a class we
term the r-primitive problem class. To this end, we systemat-
ically analyzed a range of factors that may contribute to the
problem’s complexity, thereby uncovering connections to —
and offering new insights into — existing problem classes.
In addition, we introduce a novel proof technique that may
enrich the toolkit for analyzing HTN problems. This tech-
nique enables the application of a set of actions, of which
only one is semantically applied (i.e., only one affects the
state), while the effects of all others are reversed. We refer to
this method as selective action nullification with state preser-
vation and suggest that it may have applications beyond the
specific proofs in which it has already been employed.



Acknowledgments
Pascal Bercher is the recipient of an Australian Research
Council (ARC) Discovery Early Career Researcher Award
(DECRA), project number DE240101245, funded by the
Australian Government.

References
[Alford et al., 2012] Ron Alford, Vikas Shivashankar, Ugur

Kuter, and Dana Nau. HTN problem spaces: Structure,
algorithms, termination. In Proceedings of the 5th Annual
Symposium on Combinatorial Search (SoCS 2012), pages
2–9. AAAI Press, 2012.

[Alford et al., 2014] Ron Alford, Vikas Shivashankar, Ugur
Kuter, and Dana Nau. On the feasibility of planning
graph style heuristics for HTN planning. In Proceedings of
the 24th International Conference on Automated Planning
and Scheduling (ICAPS 2014), pages 2–10. AAAI Press,
2014.

[Alford et al., 2015] Ron Alford, Pascal Bercher, and David
Aha. Tight bounds for HTN planning. In Proceedings of
the 25th International Conference on Automated Planning
and Scheduling (ICAPS 2015), pages 7–15. AAAI Press,
2015.

[Alford et al., 2016] Ron Alford, Gregor Behnke, Daniel
Höller, Pascal Bercher, Susanne Biundo, and David Aha.
Bound to plan: Exploiting classical heuristics via auto-
matic translations of tail-recursive HTN problems. In Pro-
ceedings of the 26th International Conference on Auto-
mated Planning and Scheduling (ICAPS 2016), pages 20–
28. AAAI Press, 2016.

[Behnke et al., 2022] Gregor Behnke, Florian Pollitt, Daniel
Höller, Pascal Bercher, and Ron Alford. Making trans-
lations to classical planning competitive with other HTN
planners. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence (AAAI 2022), pages 9687–9697.
AAAI Press, 2022.

[Bercher et al., 2019] Pascal Bercher, Ron Alford, and
Daniel Höller. A survey on hierarchical planning – one
abstract idea, many concrete realizations. In Proceedings
of the 28th International Joint Conference on Artificial In-
telligence (IJCAI 2019), IJCAI-2019, pages 6267–6275.
IJCAI, 2019.

[Bercher et al., 2022] Pascal Bercher, Songtuan Lin, and
Ron Alford. Tight bounds for hybrid planning. In Proceed-
ings of the 31st International Joint Conference on Artifi-
cial Intelligence (IJCAI 2022), pages 4597–4605. IJCAI,
2022.

[Bylander, 1994] Tom Bylander. The computational com-
plexity of propositional STRIPS planning. Artificial In-
telligence, 94(1-2):165–204, 1994.

[Dekker and Behnke, 2024] Maurice Dekker and Gregor
Behnke. Barely decidable fragments of planning. In Pro-
ceedings of the 27th European Conference on Artificial
Intelligence (ECAI 2024), pages 4198–4206. IOS Press,
2024.

[Erol et al., 1996] Kutluhan Erol, James Hendler, and
Dana S. Nau. Complexity results for HTN planning. An-
nals of Mathematics and Artificial Intelligence, 18(1):69–
93, March 1996.

[Gazen and Knoblock, 1997] B. Cenk Gazen and Craig A.
Knoblock. Combining the expressivity of UCPOP with
the efficiency of Graphplan. In Proceedings of the 4th Eu-
ropean Conference on Planning: Recent Advances in AI
Planning (ECP 1997), pages 221–233. Springer, 1997.

[Geier and Bercher, 2011] Thomas Geier and Pascal
Bercher. On the decidability of HTN planning with task
insertion. In Proceedings of the 22nd International Joint
Conference on Artificial Intelligence (IJCAI 2011), pages
1955–1961. AAAI Press, 2011.

[Höller et al., 2018] Daniel Höller, Pascal Bercher, Gregor
Behnke, and Susanne Biundo. A generic method to guide
HTN progression search with classical heuristics. In Pro-
ceedings of the 28th International Conference on Au-
tomated Planning and Scheduling (ICAPS 2018), pages
114–122. AAAI Press, 2018.

[Höller et al., 2020a] Daniel Höller, Pascal Bercher, and
Gregor Behnke. Delete- and ordering-relaxation heuris-
tics for HTN planning. In Proceedings of the 29th Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2020), pages 4076–4083. IJCAI, 2020.

[Höller et al., 2020b] Daniel Höller, Pascal Bercher, Gregor
Behnke, and Susanne Biundo. HTN planning as heuristic
progression search. Journal of Artificial Intelligence Re-
search (JAIR), 67:835–880, 2020.

[Olz et al., 2024] Conny Olz, Alexander Lodemann, and
Pascal Bercher. A heuristic for optimal total-order HTN
planning based on integer linear programming. In Pro-
ceedings of the 27th European Conference on Artificial
Intelligence (ECAI 2024), pages 4303–4310. IOS Press,
2024.


	Introduction
	Preliminaries
	HTN Planning
	Plan Existence and Problem Restrictions

	Complexity Analyses
	On Regularity Conditions
	On Tail-Recursion Conditions
	On Arbitrary Recursion Types

	Conclusion

